Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T03:33:52.331Z Has data issue: false hasContentIssue false

Synthesis and characterization of polyether structure carbon nitride

Published online by Cambridge University Press:  03 March 2011

Tiancheng Mu
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Jun Huang
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Zhimin Liu
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Buxing Han*
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Zhonghao Li
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Yong Wang
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Tao Jiang
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Haixiang Gao
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
*
a) Address all correspondence to this author. e-mail: hanbx@iccas.ac.cn
Get access

Abstract

Carbon nitride powder with an atomic N/C ratio of 1 has been prepared by reaction of cyanuric chloride with sodium metal. X-ray diffraction, Fourier transform infrared spectra, and x-ray photoelectron spectroscopic data provide substantial evidence for a graphite-like sp2-bonded structure composed of building blocks of s-triazine rings bridged by carbon-carbon atoms in the bulk carbon nitride. The electron-microscopy results reveal that the material is spherical particles with an average diameter of 50 nm. The optical properties and thermal stability are also characterized. Based on the experimental results, it is deduced that the structure of as-prepared material carbon nitride has polyether structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cohen, M.L.: Calculation of bulk moduli of diamond and Zinc-blende solids. Phys. Rev. B. 32, 7988 (1985).CrossRefGoogle ScholarPubMed
2Liu, A.Y. and Cohen, M.L.: Prediction of new low compressibility solids. Science 245, 841 (1989).CrossRefGoogle ScholarPubMed
3Liu, A.Y. and Cohen, M.L.: Structural properties and electronic structure of low-compressibility materials: beta-Si3N4 and hypothetical beta-C3N4. Phys. Rev. B. 41, 10727 (1990).CrossRefGoogle ScholarPubMed
4Bursill, L.A., Lin, P.J., Gurarie, V.N., Orlov, A.V. and Prawer, S.: Carbon nitride films produced by high-energy shock plasma deposition. J. Mater. Res. 10, 2277 (1995).CrossRefGoogle Scholar
5Yu, K.M., Cohen, M.L., Haller, E.E., Wansen, W.L., Liu, A.Y. and Wu, I.C.: Observation of crystalline C3N4. Phys. Rev. B 49, 5034 (1994).CrossRefGoogle ScholarPubMed
6Niu, C.M., Lu, Y.Z. and Lieber, C.M.: Experimental realization of the covalent solid carbon nitride. Science 261, 334 (1993).CrossRefGoogle ScholarPubMed
7Peng, J., Zhang, Y.F., Yang, S.Z. and Chen, G.H.: C-N-x thin films deposited by pulsed high energy plasma bombardment. Mater. Lett. 27, 125 (1996).CrossRefGoogle Scholar
8Ma, H.A., Jia, X.P., Chen, L.X., Zhu, P.W., Guo, W.L., Guo, X.B., Wang, Y.D., Li, S.Q., Zou, G.T., Zhang, G. and Bex, P.: High-pressure pyrolysis study of C3N6H6: A route to preparing bulk C3N4. J. Phys.: Condens. Matter 14, 11269 (2002).Google Scholar
9Wang, E.: A new development in covalently bonded carbon nitride and related materials. Adv. Mater. 11, 1129 (1999).3.0.CO;2-9>CrossRefGoogle Scholar
10Khabashesku, V.N., Zimmerman, J.L. and Margrave, J.L.: Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 12, 3264 (2000).CrossRefGoogle Scholar
11Zimmerman, J.L., Williams, R., Khabashesku, V.N. and Margrave, J.L.: Synthesis of spherical carbon nitride nanostructures. Nano Lett. 1, 731 (2001).CrossRefGoogle Scholar
12Gillan, E.G.: Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 12,3906 (2000).CrossRefGoogle Scholar
13Miller, D.R., Wang, J.J. and Gillan, E.G.: Rapid, facile synthesis of nitrogen-rich carbon nitride powders. J. Mater. Chem. 12, 2463 (2002).CrossRefGoogle Scholar
14Andreyev, A., Akaishi, M. and Golberg, D.: Sodium flux-assisted low-temperature high-pressure synthesis of carbon nitride with high nitrogen content. Chem. Phys. Lett. 372, 635 (2003).CrossRefGoogle Scholar
15Li, Y.D., Qian, Y.T., Liao, H.W., Ding, Y., Yang, L., Xu, C.Y., Li, F.Q. and Zhou, G.: A reduction-pyrolysis-catalysis synthesis of diamond. Science 281, 246 (1998).CrossRefGoogle ScholarPubMed
16Jiang, Y., Wu, Y., Zhang, S., Xu, C., Yu, W., Xie, Y., and Qian, Y.: A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J. Am. Chem. Soc. 122, 12383 (2000).CrossRefGoogle Scholar
17Lee, C.Y., Chiu, H.T., Peng, C.W., Yen, M.Y., Chang, Y.H. and Liu, C.S.: Polygon building block route to sp(2)-carbon-based materials. Adv. Mater. 13, 1105 (2001).3.0.CO;2-#>CrossRefGoogle Scholar
18Hu, G., Cheng, M.J., Ma, D. and Bao, X.H.: Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route. Chem. Mater. 15, 1470 (2003).CrossRefGoogle Scholar
19Hu, G., Ma, D., Cheng, M.J., Liu, L. and Bao, X.H.: Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach. Chem. Comm. 17 19481949 (2002).CrossRefGoogle Scholar
20Wygladacz, K., Malinowska, E., Szczygelska-Tao, J. and Biernat, J.: Azothia- and azoxythiacrown ethers as ion carriers. Part I. Cationic response of membrane electrodes. J. Inclusion Phenom. Macrocyclic Chem. 39, 303 (2001).CrossRefGoogle Scholar
21Vögtle, F.: Supramolecular Chemistry : An Introduction (John Wiley & Sons, New York, 1993), p. 48.Google Scholar
22Veprek, S., Wiedmann, J. and Glatz, F.J.: Plasma chemical-vapor-deposition and properties of hard C3N4 thin-films. Vac. Sci. Technol. A 13, 2914 (1995).CrossRefGoogle Scholar
23Lin-Vien, D., Colthup, N.B., Fatelley, W.G. and Grasselli, J.G.: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, San Diego, CA, 1991).Google Scholar
24Terrones, M., Redlich, P., Grobert, N., Trasobares, S., Hsu, W-K., Terrones, H., Zhu, Y-Q., Hare, J.P., Reeves, C.L., Cheetham, A.K., Rühle, M., Kroto, H.W. and Walton, D.R.M.: Carbon nitride nanocomposites: Formation of aligned CxNy nanofibers. Adv. Mater. 11, 655 (1999).3.0.CO;2-6>CrossRefGoogle Scholar
25Ivanov, B.L., Zambov, L.M., Georgiev, G.T., Popov, C., Plass, M.F. and Kulisch, W.: Low-pressure CVD of carbon nitride using triazine-containing precursors. Chem. Vap. Deposition 5, 265 (1999).3.0.CO;2-N>CrossRefGoogle Scholar
26Belton, D.N., Harris, S.J., Schemieg, S.J., Weiner, A.M. and Perry, T.A.: In situ characterization of diamond nucleation and growth. Appl. Phys. Lett. 54, 416 (1989).CrossRefGoogle Scholar
27Lupton, J.M., Hemingway, L.R., Samuel, I.D.W. and Burn, P.L.: Electroluminescence from a new distyrylbenzene based triazine dendrimer. J. Mater. Chem. 10, 867 (2000).CrossRefGoogle Scholar
28Zhang, M., Nakayama, Y. and Kume, M.: Room-temperature electroluminescence from hydrogenated amorphous carbon nitride film. Solid State Commun. 110, 679 (1999).CrossRefGoogle Scholar
29Zhang, M., Nakayama, Y. and Harada, S.: Photoluminescence of hydrogenated amorphous carbon nitride films after ultraviolet light irradiation and thermal annealing. J. Appl. Phys. 86, 4971 (1999).CrossRefGoogle Scholar