Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T06:53:19.991Z Has data issue: false hasContentIssue false

Synthesis of spinel iron oxide nanoparticle/organic hybrid for hyperthermia

Published online by Cambridge University Press:  31 January 2011

Koichiro Hayashi
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Toshifumi Shimizu
Affiliation:
Department of Crystalline Material Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Hidefumi Asano
Affiliation:
Department of Crystalline Material Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Wataru Sakamoto
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Toshinobu Yogo*
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
*
a)Address all correspondence to this author. e-mail: yogo@esi.nagoya-u.ac.jp
Get access

Abstract

Size-controlled spinel iron oxide (SIO) nanoparticle/organic hybrid was synthesized in situ from iron (III) allylacetylacetonate (IAA) at around 80 °C. The formation of SIO particles chemically bound with organics was confirmed by infrared and x-ray photoelectron spectroscopy. The sizes of SIO nanoparticles in the hybrids were monodispersed and ranged from 7 to 23 nm under controlled hydrolysis conditions. The hybrid including SIO particles of 7.3 nm was superparamagnetic, whereas those dispersed with particles above 11 nm were ferrimagnetic. The specific absorption rate (SAR) value was dependent upon the magnetic properties of the hybrid at 100 Oe. The SAR was 15.2 W g−1 in a 230 kHz alternating magnetic field and 100 Oe when the crystallite size of SIO particle in the hybrid was 16 nm. The temperatures of agars dispersed with hybrid powders of 5 and 8 mg ml−1 reached the optimum temperature (42 °C) for 17 and 8 min, respectively. The increase in temperature was controlled in terms of the strength of magnetic field. The simulation of heat transfer in the agar phantom model revealed that the suitable temperature distribution for therapy was attained from 15 to 20 min at 230 kHz and 100 Oe.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yoon, T.J., Kim, J.S., Kim, B.G., Yu, K.N., Cho, M.H., Lee, J.K.: Multifunctional nanoparticles processing a “magnetic motor effect” for drug or gene delivery. Angew. Chem. Int. Ed. 44, 1068 2005CrossRefGoogle ScholarPubMed
2Frank, J.A., Miller, B.R., Arbab, A.S., Zywicke, H.A., Jordan, E.K., Lewis, B.K., Bryant, L.H., Bulte, J.W.M.: Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxide and transfection agents. Radiology 228, 480 2003CrossRefGoogle ScholarPubMed
3Mornet, S., Vasseur, S., Grasset, F., Duguet, E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161 2004CrossRefGoogle Scholar
4Gerweck, L.E.: Modification of cell lethality at elevated temperatures the pH effect. Radiat. Res. 70, 224 1977CrossRefGoogle ScholarPubMed
5Cavaliere, R., Ciocatto, E.C., Ciovanella, B.C., Heidelberger, C., Johnson, R.O., Marcottini, M., Mondovi, B., Moricca, G., Rossi-Fanelli, A.: Selective heat sensitivity of cancer cells—Biomedical and clinical studies. Cancer 20, 1351 19673.0.CO;2-#>CrossRefGoogle Scholar
6Fortin, J.P., Wilhelm, C., Servais, J., Ménager, C., Bacri, J.C., Gazeau, F.: Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628 2007CrossRefGoogle ScholarPubMed
7Han, D.H., Wang, J.P., Luo, H.L.: Crystallite size effect on saturation magnetization of fine ferrite ferrimagnetic particles. J. Magn. Magn. Mater. 136, 176 1994CrossRefGoogle Scholar
8Chikazumi, S.: Physics of Ferromagnetism 2nd ed.Oxford Univ. Press Oxford, UK 1997 204CrossRefGoogle Scholar
9Kim, D.K., Mikhaylova, M., Zhang, Y., Muhammed, M.: Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 15, 1617 2003CrossRefGoogle Scholar
10Sun, S., Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204 2002CrossRefGoogle ScholarPubMed
11Cabañas, A., Poliakoff, M.: The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11, 1408 2001CrossRefGoogle Scholar
12Hayashimoto, Y., Sakamoto, W., Yogo, T.: Synthesis of nickel zinc ferrite nanoparticle/organic hybrid from metalorganics. J. Mater. Res. 22, 1967 2007CrossRefGoogle Scholar
13Hayashi, K., Sakamoto, W., Yogo, T.: In situ synthesis of lithium ferrite nanoparticle/polymer hybrid. J. Mater. Res. 22, 974 2007CrossRefGoogle Scholar
14Nakamura, S., Sakamoto, W., Yogo, T.: In situ synthesis of nano-sized cobalt ferrite particle/organic hybrid. J. Mater. Res. 21, 1336 2006CrossRefGoogle Scholar
15Nakamura, S., Sakamoto, W., Yogo, T.: In situ synthesis of nickel ferrite nanoparticle/organic hybrid. J. Mater. Res. 20, 1590 2005CrossRefGoogle Scholar
16Yogo, T., Nakamura, T., Sakamoto, W., Hirano, S.: Synthesis of magnetic particle/organic hybrid from metalorganic compounds. J. Mater. Res. 14, 2855 1999CrossRefGoogle Scholar
17Tayim, H.A., Sabri, M.: Synthesis of some olefin-substituted metal acetylacetonates. Inorg. Nucl. Chem. Lett. 9, 753 1973CrossRefGoogle Scholar
18Cullity, B.D.: Elements of X-ray Diffraction 2nd ed.Addison-Wesley Reading, MA 1978 284Google Scholar
19Rosensweig, R.E.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370 2002CrossRefGoogle Scholar
20Ishii, M., Nakahira, M., Yamanaka, T.: Infrared absorption and cation distributions in (Mn, Fe)3O4. Solid State Commun. 11, 209 1972CrossRefGoogle Scholar
21JCPDS No. 1906 29 International Center for Diffraction Data Newton Square, PA 1967Google Scholar
22Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., Li, M.: Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. Part A 80, 333 2007CrossRefGoogle ScholarPubMed
23Mills, P., Sullivan, J.L.: A study of the core level electrons in iron and its three oxides by means of x-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 16, 723 1983CrossRefGoogle Scholar
24Fujii, T., de Groot, F.M.F., Sawatzky, G.A., Voogt, F.C., Hibma, T., Okada, K.: In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195 1999CrossRefGoogle Scholar
25McIntyre, N.S., Zetaruk, D.G.: X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521 1977CrossRefGoogle Scholar
26Verwey, E.J.W., Haayman, P.W., Romeijn, F.C.: Physical properties and cation arrangement of oxide with spinel structures. J. Chem. Phys. 15, 181 1947CrossRefGoogle Scholar
27Yang, J.B., Zhou, X.D., Yelon, W.B., James, W.J., Cai, Q., Gopalakrishnan, K.V., Malik, S.K., Sun, X.C., Nikles, D.E.: Magnetic and structural studies of the Verwey transition in Fe3−δO4 nanoparticles. J. Appl. Phys. 95, 7540 2004CrossRefGoogle Scholar
28Morrish, A.H.: The Physical Principles of Magnetism John Wiley & Sons New York 1965 360Google Scholar
29Drake, P., Cho, H.J., Shih, P.S., Kao, C.H., Lee, K.F., Kuo, C.H., Lin, X.Z., Lin, Y.J.: Gd-doped iron-oxide nanoparticles for tumor therapy via magnetic field hyperthermia. J. Mater. Chem. 17, 4914 2007CrossRefGoogle Scholar
30Brusentsov, N.A., Gogosov, V.V., Brusentsova, T.N., Sergeev, A.V., Jurchenko, N.Y., Kuznetsov, A.A., Kuznetsov, O.A., Shumakov, L.I.: Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J. Magn. Magn. Mater. 225, 113 2001CrossRefGoogle Scholar
31Hergt, R., Andrä, W., d’Ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., Schmidt, H.G.: Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745 1998CrossRefGoogle Scholar
32Wang, X., Gu, H., Yang, Z.: The heating effect of magnetic fluids in an alternating magnetic field. J. Magn. Magn. Mater. 293, 334 2005CrossRefGoogle Scholar