Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T00:03:00.919Z Has data issue: false hasContentIssue false

Thermal stability of Nb thin films on sapphire

Published online by Cambridge University Press:  31 January 2011

Thomas Wagner
Affiliation:
Institut für Werkstoffwissenschaft, Max-Planck-Institut für Metallforschung, 70174 Stuttgart, Germany
Marko Lorenz
Affiliation:
Institut für Werkstoffwissenschaft, Max-Planck-Institut für Metallforschung, 70174 Stuttgart, Germany
Manfred Rühle
Affiliation:
Institut für Werkstoffwissenschaft, Max-Planck-Institut für Metallforschung, 70174 Stuttgart, Germany
Get access

Abstract

The Nb/α−Al2O3 system has been used as a model study for investigating the stability of different MBE grown epitaxial Nb films on α−Al2O3 substrates. The films were grown at 800 °C in ultrahigh vacuum. The growth process was monitored in situ by reflection high energy electron diffraction (RHEED). After deposition the structure of the film was investigated by x-ray diffraction (XRD) and conventional transmission electron microscopy (CTEM) which encompasses also selected area diffraction (SAD). Both techniques revealed the following orientation relationship between the Nb film and the α–Al2O3 substrate: (0001)α–Al2O3‖ (111)Nb; [2110]α–Al2O3‖ [110]Nb. The stability of the niobium films was investigated by annealing the Nb-film/α–Al2O3 system to temperatures up to 1500 °C for different periods of time. Surprisingly, the orientation relationship between the Nb film and the substrate changed to (0001)α–Al2O3‖ (110)Nb; [0110]α–Al2O3‖ [001]Nb. A model will be developed which shows that above a critical film thickness the growth orientation is metastable with respect to its crystallographic orientation. Furthermore, high resolution transmission electron microscopy (HREM) was performed to investigate the defect structure of the annealed Nb/α–Al2O3 interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Polycrystalline Thin Films: Structure, Texture, Properties and Applications, edited by K. Barmak, M. A. Parker, J. A. Floro, R. Sinclair, and D. A. Smith (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994).Google Scholar
2.Thin Films: The Relationship of Structure to Properties, edited by C. R. Aita and K. S. Sree Harsha (Mater. Res. Soc. Symp. Proc. 47, Pittsburgh, PA, 1985).Google Scholar
3.Mader, W., Z. Metallkde. 80, 139 (1989).Google Scholar
4.Mader, W. in Characterization of Defects in Materials, edited by Siegel, R. W., Weertman, J. R., and Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 403.Google Scholar
5.Jesser, W. A. and D. Kuhlmann-Wilsdorf, Phys. Status Solidi 19, 95 (1967).CrossRefGoogle Scholar
6.Matthews, J. W., in Dislocations in Solids, edited by Nabarro, F. R. N. (Elsevier, New York, 1979), p. 461.Google Scholar
7.van der Merwe, J. H., Woltersdorf, J., and Jesser, W. A., Mater. Sci. Eng. 81, 1 (1986).CrossRefGoogle Scholar
8.van der Merwe, J. H., Crit. Rev. Sol. State Mater. Sci. 17, 187 (1991).CrossRefGoogle Scholar
9.Cammarata, R. C. and Sieradzki, S., Appl. Phys. Lett. 55, 1197 (1989).CrossRefGoogle Scholar
10.Thompson, C. V., J. Appl. Phys. 58, 763 (1985).CrossRefGoogle Scholar
11.Thompson, C. V., Acta Metall. Mater. 36, 2929 (1988).CrossRefGoogle Scholar
12.Floro, J. A., Thompson, C. V., Carel, R., and Bristowe, P. D., J. Mater. Res. 9, 2411 (1994).CrossRefGoogle Scholar
13.Gautier, M., Renaud, G., Van, L. P., Villette, B., Pollak, M., Thromat, N., Jollet, F., and Duraud, J-P., J. Am. Ceram. Soc. 77, 323 (1994).CrossRefGoogle Scholar
14.Flynn, C. P., University of Illinois, Urbana–Champaign.Google Scholar
15.Mayer, J., Flynn, C. P., and M. Rühle, Ultramicroscopy 33, 51 (1990).CrossRefGoogle Scholar
16.Mayer, J., Gutekunst, G., Möbus, G., Dura, J., Flynn, C. P., and M. Rühle, Acta Metall. Mater. 40, S217 (1992).CrossRefGoogle Scholar
17.Dobson, P. J., in Surface and Interface Characterization by Electron Optical Methods, editied by Howie, A. and Valdre, U. (Plenum Press, New York and London, 1988), p. 159.CrossRefGoogle Scholar
18.Mayer, J., private communication.Google Scholar
19.Claasen, J. H., Wolf, S. A., Quadri, S. B., and Jones, L. D., J. Cryst. Growth 81, 557 (1987).CrossRefGoogle Scholar
20.Wolf, S. A., Quadri, S. B., Claasen, J. H., Francavilla, T. L., and Dalrymple, B. J., J. Vac. Sci. Technol. A 4, 524 (1986).CrossRefGoogle Scholar
21.Durbin, S. M., Cunningham, J. E., and Flynn, C. P., J. Phys. F: Met. Phys. 12, L75 (1982).CrossRefGoogle Scholar
22.Oya, G., Koishi, M., and Sawada, Y., J. Appl. Phys. 60, 1440 (1986).CrossRefGoogle Scholar
23.Igarashi, Y. and Kanayama, M., J. Appl. Phys. 57, 849 (1985).CrossRefGoogle Scholar
24.Nishihata, Y., Nakayama, M., Kato, H., Sano, N., and Terauchi, H., J. Appl. Phys. 60, 3523 (1986).CrossRefGoogle Scholar
25.van der Merwe, J. H., Interf. Sci. 1, 77 (1993).CrossRefGoogle Scholar
26.Bauer, E., App. Surf. Sci. 11/12, 479 (1982).CrossRefGoogle Scholar
27.Nix, W. D., Metall. Trans. 20A, 1989 (1988).Google Scholar
28.Bolef, D. I., J. Appl. Phys. 32, 100 (1961).CrossRefGoogle Scholar
29.Frank, F. C. and van der Merwe, J.H., Proc. Roy. Soc. A198, 216 (1949).Google Scholar
30.Gutekunst, G., Mayer, J., and Rühle, M., Scripta Metall. Mater. 31, 1097 (1994).CrossRefGoogle Scholar
31.Wagner, T., unpublished.Google Scholar
32.Thermophysical Properties of Matter, Thermal Expansion, edited by Y. S. Touloukian (Plenum Press, New York, 1977), Vol. 13.Google Scholar
33.Thermophysical Properties of Matter, Thermal Expansion, edited by Y. S. Touloukian (Plenum Press, New York, 1975), Vol. 12.Google Scholar
34.Jilavi, M. H., Untersuchungen an Poren in Oxid/Metall-Grenzflächen (Thesis, Universität Stuttgart, 1995).Google Scholar
35.Gutekunst, G., Untersuchungen der atomistischen Struktur und der Misfitversetzungen von epitaktischen Nb/A12O3-Grenzflächen (Thesis, Universität Stuttgart, 1994).Google Scholar
36.Cuomo, J. J. and Angilello, J., J. Electrochem. Soc. 120, 125 (1973).CrossRefGoogle Scholar
37.Knauss, D. and Mader, W., Ultramicroscopy 37, 247 (1991).CrossRefGoogle Scholar
38.Mader, W. and Rühle, M., Acta Metall. Mater. 37, 853 (1989).CrossRefGoogle Scholar
39.Mader, W. and Knauss, K., Acta Metall. Mater. 40, S207 (1992).CrossRefGoogle Scholar
40.Burger, K., Mader, W., and Rühle, M., Ultramicroscopy 22, 1 (1987).CrossRefGoogle Scholar
41.Burger, K. and Rühle, M., Ultramicroscopy 29, 88 (1988).CrossRefGoogle Scholar