Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T00:28:40.606Z Has data issue: false hasContentIssue false

Thermal wave analysis of contact damage in ceramics: Case study on alumina

Published online by Cambridge University Press:  31 January 2011

Lanhua Wei
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899–0001
Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899–0001
Get access

Abstract

Thermal waves are used to image damage accumulation digitally beneath Hertzian contacts in ceramics. Alumina ceramics over a range of grain size 3–48 μm are used in a case study. The nature of the images changes with increasing alumina grain size, reflecting a transition in damage mode from well-defined cone fracture in the finer-grain materials to distributed subsurface microfracture in the coarser-grain materials. Quantitative determinations of microcrack densities are evaluated in the latter case by deconvoluting thermal diffusivities from the image data. These determinations confirm the grain-size dependence of degree of damage predicted by fracture mechanics models. Potential advantages and disadvantages of thermal waves as a route to damage characterization in ceramic systems are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grice, K. R., Inglehart, L. J., Favro, L., Kuo, P. K., and Thomas, R. L., J. Appl. Phys. 54, 62456255 (1983).CrossRefGoogle Scholar
2.Rantala, J., Hartikainen, J., and Jaarinen, J., Appl. Phys. A 50, 465471 (1990).CrossRefGoogle Scholar
3.Xu, H. H. K., Wei, L., Padture, N. P., Lawn, B. R., and Yeckley, R. L., J. Mater. Sci. 30, 869878 (1995).CrossRefGoogle Scholar
4.Smith, D. T. and Wei, L., J. Am. Ceram. Soc. 78, 13011304 (1995).CrossRefGoogle Scholar
5.Pajares, A., Wei, L., Lawn, B. R., and Marshall, D. B., J. Mater. Res. 10, 2613 (1995).CrossRefGoogle Scholar
6.Boccara, A. C., Fournier, D., and Badoz, J., Appl. Phys. Lett. 36, 130132 (1980).CrossRefGoogle Scholar
7.Wei, L., Ph.D. Thesis, Wayne State University, Detroit, MI (1993).Google Scholar
8.Wei, L. and White, G. S., J. Mater. Res., submitted.Google Scholar
9.Guiberteau, F., Padture, N. P., Cai, H., and Lawn, B. R., Philos. Mag. A 68, 10031016 (1993).CrossRefGoogle Scholar
10.Guiberteau, F., Padture, N. P., and Lawn, B. R., J. Am. Ceram. Soc. 77, 18251831 (1994).CrossRefGoogle Scholar
11.Lawn, B. R., Padture, N. P., Cai, H., and Guiberteau, F., Science 263, 11141116 (1994).CrossRefGoogle Scholar
12.Cai, H., Stevens Kalceff, M. A., and Lawn, B. R., J. Mater. Res. 9, 762770 (1994).CrossRefGoogle Scholar
13.Cai, H., Kalceff, M.A.S., Hooks, B.M., Lawn, B. R., and Chyung, K., J. Mater. Res. 9, 26542661 (1994).CrossRefGoogle Scholar
14.Padture, N. P. and Lawn, B. R., J. Am. Ceram. Soc. 77, 25182522 (1994).CrossRefGoogle Scholar
15.Pajares, A., Guiberteau, F., Lawn, B. R., and Lathabai, S., J. Am. Ceram. Soc. 78, 10831086 (1995).CrossRefGoogle Scholar
16.Padture, N. P. and Lawn, B. R., J. Am. Ceram. Soc. 78, 14311438 (1995).CrossRefGoogle Scholar
17.Lawn, B. R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
18.Chantikul, P., Bennison, S. J., and Lawn, B. R., J. Am. Ceram. Soc. 73, 24192427 (1990).CrossRefGoogle Scholar
19.Lawn, B. R., Padture, N. P., Guiberteau, F., and Cai, H., Acta Metall. 42, 16831693 (1994).CrossRefGoogle Scholar
20.Anthony, T. R., Banholzer, W. F., Fleischer, J.F., Wei, L., Kuo, P.K., Thomas, R. L., and Pryor, R.W., Phys. Rev. B 42, 11041111 (1990).CrossRefGoogle Scholar
21.Inglehart, L. J., Grice, K. R., Favro, L. D., Kuo, P. K., and Thomas, R. L., Appl. Phys. Lett. 43, 446448 (1983).CrossRefGoogle Scholar
22.Davies, R. M., Proc. R. Soc. London A 197, 416432 (1949).Google Scholar
23.Tabor, D., Hardness of Metals (Clarendon, Oxford, 1951).Google Scholar
24.Swain, M. V. and Lawn, B. R., Phys. Status Solidi 35, 909923 (1969).CrossRefGoogle Scholar
25.Swain, M.V. and Hagan, J.T., J. Phys. D: Appl. Phys. 9, 22022214 (1976).CrossRefGoogle Scholar
26.Hasselman, D.P.H., J. Composite Mater. 12, 403407 (1978).CrossRefGoogle Scholar
27.Xu, H.H.K. and Jahanmir, S., J. Am. Ceram. Soc. 77, 13881390 (1994).CrossRefGoogle Scholar
28.Xu, H. H. K. and Jahanmir, S., J. Mater. Sci. 30, 22352247 (1995).CrossRefGoogle Scholar
29.Fischer-Cripps, A. C. and Lawn, B. R., Acta Metall. (in press).Google Scholar