Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T03:38:56.408Z Has data issue: false hasContentIssue false

Thermodynamic modeling of the Ni–Al–Ga–N system

Published online by Cambridge University Press:  03 March 2011

B.A. Hull
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
S.E. Mohney
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Z-K. Liu
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Isothermal sections in the Ni–Al–Ga–N quaternary phase diagram were calculated to provide a greater understanding of interfacial reactions between Ni contacts and AlxGa1−xN. The calculations were performed employing a thermodynamic database of the Ni–Al–Ga–N system that was constructed by combining the six binary systems of the four component system. The model of the Ga–N binary system was created in this work. The models of the Ni–Ga and Ni–Al systems, both of which were taken from the literature, were modified to be compatible with one another. Thermodynamic data and phase boundaries for other binary systems were taken from the literature, as was information on portions of the Al–Ga–N and Ni–Al–Ga phase diagrams. The calculated sections reveal that during reaction between Ni and AlxGa1−xN, Ni is favored to react with the GaN component of the semiconductor alloy, leaving an Al-enriched AlxGa1−xN. These predictions are consistent with a recent analysis of the Ni, Al, and Ga elemental distributions across the interface between a Ni thin film and an Al0.47Ga0.53N epitaxial layer following annealing at 850 °C. Consideration of the thermodynamic driving forces suggests that this may be a general phenomenon existing in other metal–Al–Ga–N systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nakamura, S., Pearton, S. and Fasol, G.The Blue Laser Diode – Second Edition, (Springer, Berlin, Germany, 2000)CrossRefGoogle Scholar
2Nakamura, S., Senoh, M. and Mukai, T.: High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl. Phys. Lett. 62, 2390 (1993).CrossRefGoogle Scholar
3Pearton, S.J. and Ren, F.: GaN electronics. Advanced Materials 12 1571 (2000).3.0.CO;2-T>CrossRefGoogle Scholar
4Xing, H., Keller, S., Wu, Y-F., McCarthy, L., Smorchkova, I.P., Buttari, D., Coffie, R., Green, D.S., Parish, G., Heikman, S., Shen, L., Zhang, N., Xu, J.J., Keller, B.P., DenBaars, S.P. and Mishra, U.K.: Gallium nitride based transistors. Phys.: Condens. Matter 13 7139 (2001).Google Scholar
5Wu, Y-F., Kapolnek, D., Ibbetson, J.P., Parikh, P., Keller, B.P. and Mishra, U.K.: Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Dev. 48, 586 (2001).Google Scholar
6Arulkumaran, S., Egawa, T., Ishikawa, H., Umeno, M. and Jimbo, T.: Effects of annealing on Ti, Pd, and Ni/n-Al0.11Ga0.89N Schottky diodes. IEEE Trans. Electron. Dev. 48, 573 (2001).CrossRefGoogle Scholar
7Egawa, T., Zhao, G-Y., Ishikawa, H., Umeno, M. and Jimbo, T.: Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire. IEEE Trans. Electron Dev. 48, 603 (2001).CrossRefGoogle Scholar
8Readinger, E.D., Luther, B.P., Mohney, S.E. and Piner, E.L.: Environmental aging of Schottky contacts ton- AlGaN J. Appl. Phys. 89, 7983 (2001).CrossRefGoogle Scholar
9Zhou, L., Khan, F.A., Cueva, G., Kumar, V., Adesida, I., Sardela, M.R.Jr., and Auret, F.D.: Thermal stability of rhenium Schottky contacts on n-type AlxGa1-xN. Appl. Phys. Lett. 81, 1624 (2002).CrossRefGoogle Scholar
10Kumar, V., Selvanathan, D., Kuliev, A., Kim, S., Flynn, J. and Adesida, I.: Characterisation of iridium Schottky contacts on n-AlxGa1-xN. Electron. Lett. 39, 747 (2003).CrossRefGoogle Scholar
11Kuball, M., Rajasingam, S., Sarua, A., Uren, M.J., Martin, T., Hughes, B.T., Hilton, K.P. and Balmer, R.S.: Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy. Appl. Phys. Lett. 82, 124 (2003).CrossRefGoogle Scholar
12Blank, T.V., Goldberg, Y.A., Kalinina, E.V., Konstantinov, O.V., Nikolaev, A.E., Fomin, A.V. and Cherenkov, A.E.: Mechanism of the current flow in Pd-(heavily doped p-AlxGa1-xN) ohmic contact. Semiconductors 35, 529 (2001).CrossRefGoogle Scholar
13Jun, B-H., Hirayama, H. and Aoyagi, Y.: Effect of thermal annealing on the Pd/Au Contact to p-type Al0.15Ga0.85N. Jpn. J. Appl. Phys. 41, 581 (2002).CrossRefGoogle Scholar
14Hull, B.A., Mohney, S.E., Chowdhury, U., Dupuis, R.D., Gotthold, D., Birkhahn, R., and Pophristic: Contacts to high aluminum fraction p-type aluminum gallium nitride, inGaN and Related alloys—2002, edited by Wetzel, C., Yu, E.T., Speck, J.S., Rizzi, A., and Arakawa, Y. (Mater. Res. Soc. Symp. Proc. 743, Warrendale, PA, 2003), p. L12.2.Google Scholar
15Hull, B.A. An investigation of the processing and properties of ohmic contacts to p -type aluminum gallium nitride. Ph.D. Thesis, The Pennsylvania State University (2004)Google Scholar
16Hull, B.A., Mohney, S.E., Chowdhury, U. and Dupuis, R.D.: Compositional shift in AlxGa1-xN beneath annealed metal contacts. J. Vac. Sci. Technol. B 22 654 (2004).CrossRefGoogle Scholar
17Andersson, J.O., Helander, T., Hoglund, L.H., Shi, P.F. and Sundman, B.: Thermo-Calc & DICTRA, computational tools for materials science. Calphad. 26, 273 (2002).CrossRefGoogle Scholar
18Ochiai, S., Oya, Y., and Suzuki, T., Bull. P.M.E. (T.I.T.) 52, 1 (1983).Google Scholar
19 C-H. Jan. Interfacial phenomena in the contact metallization of GaAs with Ni-based intermetallic alloys. Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin (1991)Google Scholar
20Hillert, M. and Staffanson, L-I.: Acta Chem. Scand. 24, 3618 (1970).CrossRefGoogle Scholar
21(SGTE), Scientific Group Thermodata Europe: Thermodynamic Properties of Inorganic Materials , Lehrstuhl für Theoretische Hüttenkunde, Ed. Landolt-Boernstein New Series, Group IV, Springer-Verlag, Berlin, Germany 19, (1999)Google Scholar
22Ansara, I., Chatillon, C., Lukas, H.L., Nishizawa, T., Ohtani, H., Ishida, K., Hillert, M., Sundman, B., Argent, B.B., Watson, A., Chart, T.G. and Anderson, T.: A binary database for III-V compound semiconductor systems. Calphad. 18, 177 (1994).CrossRefGoogle Scholar
23Huang, W. and Chang, Y.A.: A thermodynamic analysis of the Ni-Al system. Intermetallics 6, 487 (1998).CrossRefGoogle Scholar
24Huang, W. and Chang, Y.A.: A thermodynamic analysis of the Ni-Al system. Intermetallics 7, 625 (1999).CrossRefGoogle Scholar
25Ansara, I., Dupin, N., Lukas, H.L. and Sundman, B.: Thermodynamic assessment of the Al-Ni system. J. Alloys and Comp. 247, 20 (1997).CrossRefGoogle Scholar
26Gröbner, J., Wenzel, R., Fischer, G.G. and Schmid-Fetzer, R.: Thermodynamic calculation of the binary systems M- Ga and investigation of ternary M -Ga-N phase equilibria (M = Ni, Co, Pd, Cr). J. Phase Equil. 20, 615 (1999).CrossRefGoogle Scholar
27Pearson, W.B. and Rimek, D.M.: Can. J. Phys. 35, 1228 (1957).CrossRefGoogle Scholar
28Martosudirjo, S. and Pratt, J.N.: Enthalpies of formation of solid nickel-gallium and nickel-germanium alloys. Thermochim. Acta. 17, 183 (1976).CrossRefGoogle Scholar
29Predel, B. and Vogelbein, W.: Thermodynamische untersuchung der systeme eisen—gallium und kobalt—gallium. Thermochim. Acta. 13, 133 (1975).CrossRefGoogle Scholar
30Katayama, I., Igi, S. and Kozuka, Z.: J. Jpn. Inst. Met. 38, 332 (1973).2001).CrossRefGoogle Scholar
31Wriedt, H.A. In Phase Diagrams of Binary Nickel Alloys , edited by Nash, P. (ASM International, Materials Park, OH, 1991) pp. 213216Google Scholar
32Guillermet, A. Fernández and Frisk, K.: International J. of Thermophysics 12 417 (1991).CrossRefGoogle Scholar
33Davydov, A.V. and Anderson, T.J.: Thermodynamic assessment of the gallium-nitrogen system. Phys. Status Solidi 188 407 (2001).3.0.CO;2-P>CrossRefGoogle Scholar
34Barin, I.Thermochemical Data of Pure Substances, 2nd ed. (VCH, Weinheim, Germany 1993)Google Scholar
35Wagman, D.D., Evans, W.H., Parker, V.B., Halow, I., Bailey, S.M., and Schumm., R.H.Selected Values of Chemical Thermodynamic Properties , NBS Technological Note 270-3, National Bureau of Standards, Washington, D.C. (1968)Google Scholar
36Kubaschewski, O., Alcock, C.B., and Spencer., P.J.Materials Thermochemistry, 6th ed. (Pergamon Press, Oxford, U.K., 1993)Google Scholar
37Hahn, H. and Juza, R.: Z. Anorg. Allg. Chem. 244, 111 (1940).CrossRefGoogle Scholar
38Ranade, M.R., Tessier, F., Novrotsky, A., Leppert, V.J., Risbud, S.H., DiSalvo, F.J. and Balkas, C.M.: Enthalpy of gormation of gallium nitride. J. Phys. Chem. B 104, 4060 (2000).CrossRefGoogle Scholar
39Madar, R., Jacob, G., Hallais, J. and Fruchart, R.: High pressure solution growth of GaN. J. Cryst. Growth 31 197 (1975).CrossRefGoogle Scholar
40Karpinski, J. and Porowski, S.: High pressure thermodynamics of GaN. J. Cryst. Growth 66 11 (1984).CrossRefGoogle Scholar
41Chen, X-L., Lan, Y-C., Liang, J-K., Cheng, X-R., Xu, Y-P., Xu, T., Jiang, P-Z. and Lu, K-Q.: Chin. Phys. Lett. 16, 107 (1999).CrossRefGoogle Scholar
42Unland, J., Onderka, B., Davydov, A. and Schmid-Fetzer, R.: Thermodynamics and phase stability in the Ga-N system. J. Cryst. Growth 256 33 (2003).CrossRefGoogle Scholar
43Takayama, T., Yuri, M., Itoh, K., Saba, T., Harris, J.S. and Jr., : Analysis of phase-separation region in wurtzite group III nitride quaternary material system using modified valence force field model. J. Cryst. Growth 222 29 (2001).CrossRefGoogle Scholar
44Takayama, T., Yuri, M., Itoh, K., Harris, J.S. and Jr., : Theoretical predictions of unstable two-phase regions in wurtzite group-III-nitride-based ternary and quaternary material systems using modified valence force field model. J. Appl. Phys. 90, 2358 (2001).CrossRefGoogle Scholar
45Mohney, S.E. and Lin, X.: Estimated phase equilibria in the transition metal-Ga-N systems: consequences for electrical contacts to GaN. J. Electron. Mater. 25, 811 (1996).CrossRefGoogle Scholar
46Sime, R.J. and Margrave, J.L.: Gaseous metal nitrides. II. the vapor pressure of GaN(s) and evidence for a complex gaseous nitride. J. Phys. Chem. 60, 810 (1956).CrossRefGoogle Scholar
47Lorenz, M.R. and Binkowski, B.B.: J. Electrochem. Soc. 109, 24 (1962).CrossRefGoogle Scholar
48Morimoto, Y.: J. Electrochem. Soc. 121, 1383 (1974).CrossRefGoogle Scholar
49Jacob, G., Madar, R. and Hallais, J.: Optimized growth conditions and properties of n-type and insulating GaN. Mater. Res. Bull. 11, 445 (1976).CrossRefGoogle Scholar
50Furtado, M. and Jacob, G.: Study on the influence of annealing effects in GaN VPE. J. Crystal Growth 64 257 (1983).CrossRefGoogle Scholar
51Pisch, A. and Schmid-Fetzer, R.: In situ decomposition study of GaN thin films. J. Crystal Growth 187 329 (1998).CrossRefGoogle Scholar
52Rebey, A., Boufaden, T. and Jani, B. El: In situ optical monitoring of the decomposition of GaN thin films. J. Crystal Growth 203 12 (1999).CrossRefGoogle Scholar
53Schweitz, K.O. and Mohney, S.E.: Phase equilibria in transition metal Al-Ga-N systems and thermal stability of contacts toAlGaN. J. Electron. Mater. 30, 175 (2001).CrossRefGoogle Scholar
54Nash, P., Singleton, M.F. and Murray, J.L.in Phase Diagrams of Binary Nickel Alloys , edited by Nash, P. (ASM International, Metals Park, OH, 1991) p. 3Google Scholar
55Lee, S.Y. and Nash, P.in Phase Diagrams of Binary Nickel Alloys , edited by Nash, P. (ASM International, Metals Park, OH, 1991) p. 133Google Scholar
56Handbook of Chemistry and Physics–71st Edition, edited by Lide, D.R., Press, CRC, Boca Raton (1990).Google Scholar
57Meschel, S.V. and Kleppa, O.J.: Determination of the standard enthalpies of formation of Pd2Ga and PdGa by high-temperature direct synthesis calorimetry. Thermochim. Acta. 292, 13 (1997).CrossRefGoogle Scholar
58Meschel, S.V. and Kleppa, O.J.: Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry. J. Alloys Comp. 191, 111 (1993).CrossRefGoogle Scholar
59Predel, B. and Stein, D.W.: Enthalpies of formation of binary compounds of gallium with copper, silver and gold and the analysis of thermodynamic properties of 3/2-electron-compounds. Acta Metall. 20, 681 (1972).CrossRefGoogle Scholar
60Predel, B. and Schallner, U.: Thermodynamische untersuchung der systeme aluminium-antimon und aluminium-gold. Mater. Sci. Engr. 5, 210 (1970).CrossRefGoogle Scholar
61de Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R. and Niessen, A.K.Cohesion in Metals: Transition Metal Alloys, (Elsevier, Amsterdam 1988).Google Scholar