Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T01:02:37.206Z Has data issue: false hasContentIssue false

Vapor grown carbon fiber reinforced aluminum composites with very high thermal conductivity

Published online by Cambridge University Press:  03 March 2011

Jyh-Ming Ting
Affiliation:
Applied Sciences, Inc., Cedarville, Ohio 45314–0579
Max L. Lake
Affiliation:
Applied Sciences, Inc., Cedarville, Ohio 45314–0579
Get access

Abstract

The first use of continuous vapor grown carbon fiber (VGCF) as reinforcement in aluminum metal matrix composite (Al MMC) is reported. Al MMC represents a new material for thermal management in high-power, high-density electronic devices. Due to the ultrahigh thermal conductivity of VGCF, 1950 W/m-K at room temperature, VGCF-reinforced Al MMC exhibits excellent thermal conductivity that cannot be achieved by using any other carbon fiber as reinforcement. An unprecedented high thermal conductivity of 642 W/m-K for Al MMC was obtained by using 36.5% of VGCF.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lee, S., Lemczyk, T. F., and Yovanovich, M. M., in Proc. of Semi-Therm. 1992, Austin, TX, February (1992), pp. 5561.Google Scholar
2Zweben, C., JOM, 1523, July (1992).CrossRefGoogle Scholar
3Zweben, C. and Schmidt, K. A., Electronic Materials Handbook, Vol. 1, Packaging (ASM International Metals Park, OH, 1989).Google Scholar
4Nysten, B. and Issi, J-P., Composite 21, 339 (1990).CrossRefGoogle Scholar
5Schmidt, K. A. and Zweben, C., Thermal and Mechanical Behavior of Metal Matrix Composites, edited by Kennedy, L. M., Morller, H. H., and Johnson, W. S. (ASTM, Philadelphia, PA, 1989).Google Scholar
6Foster, D. A., SAMPE Quarter, August, 5865 (1989).Google Scholar
7Johnson, W. B. and Sonuparlak, B., J. Mater. Res. 8, 1169 (1993).CrossRefGoogle Scholar
8Tyler, J. R. and van den Bergh, M. R., Proc. 3rd Int. SAMPE Electronic Conf., June 20–22, 1989 (SAMPE, Pittsburgh, PA, 1989), pp. 10681078.Google Scholar
9Heremans, J. and Beetz, C. P. Jr., Phys. Rev B 32, 1981 (1985).Google Scholar
10Ting, J-M., Lake, M. L., and Ingram, D. C., Diamond Relat. Mater. 2 (5–7), 1069 (1993).CrossRefGoogle Scholar
11Hughes, T. V. and Chamber, C. R., U. S. Patent No. 405,480, June 18 (1889).Google Scholar
12Koyama, T., Carbon 10, 757 (1972).Google Scholar
13Koyama, T. and Endo, M., Ohyo Butsuri 42, 690 (1973).Google Scholar
14Tibbetts, G. G., Carbon 30 (3), 399 (1992).CrossRefGoogle Scholar
15Endo, M. and Shikata, M., Ohyo Butsuri 54, 507 (1985).Google Scholar
16Tibbetts, G. G. and Gorkiewicz, D. W., Carbon 31 (7), 1039 (1993).Google Scholar
17Katsumata, M. and Endo, M., J. Mater. Res. 9, 841 (1994).CrossRefGoogle Scholar
18Mortensen, A., Masur, L. J., Cornie, J. A., and Flemings, M. C., Metall. Trans. 20A, 2535 (1989).CrossRefGoogle Scholar
19Mortensen, A., Masur, L. J., Cornie, J. A., and Flemings, M. C., Metall. Trans. 20A, 2549 (1989).Google Scholar
20Klier, E., Mortensen, A., Cornie, J. A., and Flemings, M. C., J. Mater. Sci., July (1990).Google Scholar
21Taylor, R. E., Thermophysical Properties Research Lab. Report No. 181A, Purdue University, July (1985).Google Scholar