Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T01:53:46.642Z Has data issue: false hasContentIssue false

X-ray photoelectron spectroscopy studies of silicon suboxides obtained by the sol-gel method

Published online by Cambridge University Press:  31 January 2011

S. Santucci*
Affiliation:
Dipartimento di Fisica Universitá dell'Aquila, INFM Unitá dell'Aquila, 67010, Coppito (AQ), Italy
E. Cordeschi
Affiliation:
Dipartimento di Fisica Universitá dell'Aquila, INFM Unitá dell'Aquila, 67010, Coppito (AQ), Italy
L. Lozzi
Affiliation:
Dipartimento di Fisica Universitá dell'Aquila, INFM Unitá dell'Aquila, 67010, Coppito (AQ), Italy
M. Passacantando
Affiliation:
Dipartimento di Fisica Universitá dell'Aquila, INFM Unitá dell'Aquila, 67010, Coppito (AQ), Italy
P. Picozzi
Affiliation:
Dipartimento di Fisica Universitá dell'Aquila, INFM Unitá dell'Aquila, 67010, Coppito (AQ), Italy
L. Mancinelli degli Esposti
Affiliation:
ISRIM, 05100, Terni, Italy
*
a)Address all correspondence to this author.
Get access

Abstract

Silicon suboxides thin films obtained by sol-gel and dip-coating methods, starting from a sol containing different percentages of TEOS (tetraethoxysilane) and MTEOS (methyltriethoxysilane), were grown onto silicon substrates. The samples were annealed at 100, 300, and 500 °C, and the electronic and compositional properties of the surface were studied by x-ray photoelectron spectroscopy (XPS) detecting the Si “Auger parameter” and the valence band. The effects produced by an ion-sputtering treatment of the samples were also studied.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dislich, H., J. Non-Cryst. Solids 57, 371 (1983).Google Scholar
2.Schmidt, H., in Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 32, Elsevier, New York, 1984), p. 327.Google Scholar
3.Murakami, M., Izumi, K., Deguchi, T., Morita, A., Tohge, N., and Minami, T., J. Jpn. Ceram. Soc. 97, 91 (1989).Google Scholar
4. K, Kamiya, Ohya, M., and Yoko, T., J. Non-Cryst. Solids 83, 208 (1986).Google Scholar
5.Izumi, K., Tanaka, M., Uchida, Y., Tohge, N., and Minami, T., J. Non-Cryst. Solids 147/148, 483 (1992).Google Scholar
6.Esposti, L. Mancinelli Degli, Innocenzi, P., Scarinci, G., and Guglielmi, M., in European Workshop on Hybrid organic-inorganic Materials, edited by Sanchez, C. and Ribot, F. (Chateau de Bierville, France, 1993), p. 229.Google Scholar
7.Kelts, I. W., Effinger, N. J., and Melpolder, S. M., J. Non-Cryst. Solids 83, 353 (1986).CrossRefGoogle Scholar
8.Kamiya, K., Iwamoto, Y., Yoko, T., and Sakka, S., J. Non-Cryst. Solids 100, 195 (1988).CrossRefGoogle Scholar
9.Wada, M., Kamiya, K., and Nasu, H., Phys. Chem. Glasses 33, 56 (1992).Google Scholar
10.Yoshino, H., Kamiya, K., and Nasu, H., J. Non-Cryst. Solids 91, 122 (1990).Google Scholar
11.Galeener, F. L. and Geissberger, A. E., Phys. Rev. B 27, 6199 (1983).Google Scholar
12.West, J. K., Hench, L. L., Zhu, B., and Cheng, Y. C., J. Non-Cryst. Solids 121, 51 (1990).CrossRefGoogle Scholar
13.Crowell, J. E., Tedder, L. L., Cho, H., Cascarano, F. M., and Logan, M. A., J. Vac. Sci. Technol. A 8, 1864 (1990).CrossRefGoogle Scholar
14.Dementijev, A. P., Ivanova, O. P., Vasilyev, L. A., Naumkin, A. V., Nemirovsky, D. M., and Shalaev, D. Y., J. Vac. Sci. Technol. A 12, 423 (1994).Google Scholar
15.Alfonsetti, R., Lozzi, L., Passacantando, M., Picozzi, P., and Santucci, S., Thin Solid Films 213, 158 (1992).Google Scholar
16.Alfonsetti, R., Lozzi, L., Passacantando, M., Picozzi, P., and Santucci, S., Appl. Surf. Sci. 70/71, 222 (1993).Google Scholar
17.Lozzi, L., Passacantando, M., Picozzi, P., Santucci, S., Tomassi, G., Alfonsetti, R., and Borghesi, A., Surf. Interf. Anal. 22, 190 (1994).CrossRefGoogle Scholar
18.Wagner, C. D., Gale, L. H., and Raymond, R. H., Anal. Chem. 51, 466 (1979).CrossRefGoogle Scholar
19.Wagner, C. D., Passoja, D. E., Hillery, H. F., Kinisky, T. G., Six, H. A., Jansen, W. T., and Taylor, J. A., J. Vac. Sci. Technol. 21, 933 (1982).CrossRefGoogle Scholar
20.Pomponio, A. Di, Continenza, A., Lozzi, L., Passacantando, M., Santucci, S., and Picozzi, P., Solid State Commun. 95, 313 (1995).Google Scholar
21.De Seta, M., Wang, S. L., Fumi, F., and Evangelisti, F., Phys. Rev. B 47, 7041 (1993).Google Scholar
22.Ying, J. Y. and Benziger, J. B., J. Non-Cryst. Solids 147/148, 222 (1992).Google Scholar
23.Van Der Voort, P., Gillis-D'Hamers, I., Vrancken, K. C., and Vansant, E. F., J. Chem. Soc. Faraday Trans. 87, 3899 (1991).Google Scholar
24.Yeh, J. J. and Lindau, I., Atomic Data and Nuclear Data Tables 32, 1 (1985).CrossRefGoogle Scholar