Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T17:46:49.707Z Has data issue: false hasContentIssue false

Alkali metal ion exchange selectivity of Al-substituted tobermorite

Published online by Cambridge University Press:  31 January 2011

Masamichi Tsuji
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Sridhar Komarneni*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a) Also with the Department of Agronomy.
Get access

Abstract

Alkali metal ion exchange isotherms at a total ionic strength of 0.001 M were determined at 25 °C on a 1.13 nm anomalous [Al3+ + Na+]-substituted tobermorite with the formula, Ca5Na0.75Al0.9Si5.1O16(OH)2 · 6.03H2O. The Kielland plots of Na+/K+, Na+/Rb+, and Na+/Cs+ exchange reactions showed straight lines. The slopes were steeper for Cs+ and Rb+ exchange reactions, as compared to K+ exchange. The cation-exchange selectivity for alkali metals was found to increase as follows: Cs+>Rb+>K+>Na+. A new evaluation method of the separation factor (αMN/KMd/KNd,Kd: distribution coefficient) for a combination of two cations at infinite dilution was proposed in terms of the selectivity coefficient (KMNa) which can be easily determined from the Kielland plot. An extremely large separation factor for Cs (αCsNa = 112) was found at infinite dilution. These basic studies of cation exchange selectivity are of relevance in cation separation and purification and nuclear waste disposal.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amphlett, C. B.Inorganic Ion Exchanger (Elsevier, Amsterdam, 1964).Google Scholar
2Vesely, V. and Pekarek, V.Talanta 19, 219(1972).Google Scholar
3Pekarek, V. and Vesely, V.Talanta 19, 1245(1972).Google Scholar
4Abe, M.Bunseki Kagaku 23, 1254, 1561(1974).Google Scholar
5Inorganic Ion Exchange Materials, edited by Clearfield, A. (CRC Press, Boca Raton, FL, 1982).Google Scholar
6Komarneni, S.Roy, D.M. and Roy, R.Cem. Concr. Res. 12, 773(1982).Google Scholar
7Komarneni, S. and Roy, D. M.Science 221, 647(1983).CrossRefGoogle Scholar
8Hamid, S. A.Z. Kristallogr. 154, 189(1981).Google Scholar
9Komarneni, S. and Guggenheim, S.Min. Mag. 52, 371(1988).CrossRefGoogle Scholar
10Wieker, W.Grimmer, A. R.Winkler, A.Magi, M.Tarmak, M. and Lippmaa, E.Cem. Concr. Res. 12, 333(1982).CrossRefGoogle Scholar
11El-Hemaly, S.A.S., Mitsuda, T. and Taylor, H. F. W.ibid., 7, 429(1977).Google Scholar
12Komarneni, S.Roy, R.Roy, D.M.Fyfe, C.A.Kennedy, G.J.Bothnerby, A.A.Dadok, J. and Chesnick, A. S.J. Mater. Sci. 20, 4209(1985).CrossRefGoogle Scholar
13Komarneni, S. and Roy, D. M.J. Mat. Sci. 20, 2930(1985).Google Scholar
14Komarneni, S.Breval, E.Miyake, M. and Roy, R.Clays Clay Mineral. 35, 385(1987).Google Scholar
15Kielland, J.J. Soc. Chem. Ind., London 54, 232(1935).Google Scholar
16Rees, L. V. C. The Chemical Society Special Publications, No. 33, The Properties and Applications of Zeolites, p. 218(1979).Google Scholar
17Gains, G.L. Jr. and Thomas, H.C.J. Chem. Phys. 21, 714(1953).CrossRefGoogle Scholar
18Breck, D. W.Zeolite Molecular Sieves (Wiley, 1974), pp. 529592.Google Scholar
19Abe, M.J. Inorg. Nucl. Chem. 41, 85(1979).CrossRefGoogle Scholar
20Abe, M.Yoshigasaki, K. and Sugiura, T.ibid., 42, 1753(1980).Google Scholar
21Abe, M. and Furuki, N.Solv. Extr. Ion Exchange 4, 547(1986).Google Scholar
22Barrer, R.M.Papadopoulos, R. and Rees, V. L.C.J. Inorg. Nucl. Chem. 29, 2047(1967).Google Scholar
23Barrer, R. M.Natural Zeolites, Occurrence, Properties, Use, edited by Sand, L. B. and Mumpton, F. A. (Pergamon, New York, 1978), p. 385.Google Scholar
24Shannon, R.D.Acta Crystallogr. A32, 751(1976).Google Scholar