Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T02:18:49.538Z Has data issue: false hasContentIssue false

Amorphization mechanisms of NiZr2 by ball-milling

Published online by Cambridge University Press:  31 January 2011

D. Galy
Affiliation:
Centre d'Etudes de Saclay, CEREM/Section de Recherches de Métallurgie Physique, 91191 Gif sur Yvette Cedex, France
L. Chaffron
Affiliation:
Centre d'Etudes de Saclay, CEREM/Section de Recherches de Métallurgie Physique, 91191 Gif sur Yvette Cedex, France
G. Martin
Affiliation:
Centre d'Etudes de Saclay, CEREM/Section de Recherches de Métallurgie Physique, 91191 Gif sur Yvette Cedex, France
Get access

Abstract

The microstructure of NiZr2 in the course of amorphization by ball-milling is studied by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The evolution from the initial fully crystalline alloy to a fully amorphized material is described. It is shown that prior to amorphization, the powder aggregates achieve a 100% nanocrystalline structure; the amorphous phase then appears and develops to the expense of the nanocrystalline phase. No massive chemical disordering is observed, but a small amount cannot be ruled out. It is proposed that amorphization occurs by chemical disordering at interfaces, induced by the scattering of shear waves.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yamada, K. and Koch, C. C., J. Mater. Res. 8, 1317 (1993).Google Scholar
2.Cho, Y. S. and Koch, C. C., J. Alloys and Compounds 194, 287 (1993).Google Scholar
3.Koch, C. C. and Cho, Y. S., Nanostructured Mater. 1, 207 (1992).CrossRefGoogle Scholar
4.Seki, Y. and Johnson, W. L., in Solid State Powder Processing, edited by Clauer, A. H. and de Barbadillo, J. J. (1990), p. 287.Google Scholar
5.Pochet, P., Tominez, E., Chaffron, L., and Martin, G., Phys. Rev. B 52, 4006 (1995).Google Scholar
6.Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Mater. Res. 4, 1292 (1989).CrossRefGoogle Scholar
7.Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).Google Scholar
8.Koch, C. C., Mater. Trans. JIM 36, 85 (1995).Google Scholar
9.Limoge, Y., Rahman, A., Hsieh, S., and Yip, S., J. Non-Cryst. Solids 99, 75 (1988).Google Scholar
10.Massobrio, C., Pontikis, V., and Martin, G., Phys. Rev. B 45, 2484 (1991).Google Scholar
11.Sabochick, M. J. and Lam, N. Q., Phys. Rev. B 43, 5243 (1991).CrossRefGoogle Scholar
12.Chen, Y., Bibole, M., le Hazif, R., and Martin, G., Phys. Rev. B 48, 14 (1993).CrossRefGoogle Scholar
13.Bellon, P. and Averback, R. S., Phys. Rev. Lett. 74, 1819 (1995).Google Scholar
14.Galy, D. and Boulanger, L., Phys. Status Solidi (a) 139, K81 (1993).CrossRefGoogle Scholar
15.Galy, D. and Boulanger, L., J. Mater. Sci. 30, 1766 (1995).Google Scholar
16.Clarke, D. R., Kroll, M. C., Kirchner, P. D., and Cook, R. F., Phys. Rev. Lett. 60, 2156 (1988).Google Scholar
17.Friedel, J., Dislocations (Pergamon Press, Oxford, England, 1964), p. 276.Google Scholar
18.Ibers, J. A. and Vainshtein, B. K., International Crystallographic Tables III (Kynoch Press, Birmingham, 1962), Table 3.3.3.A(2).Google Scholar
19.Xu, G. B., Meshii, M., Okamoto, P. R., and Rehn, L. E., J. Alloys Comp. 194, 401 (1993).Google Scholar
20.Jaouen, C., Rivière, J. P., Delafond, J., Thomé, L., Pons, F., Danielou, R., Fontenille, J., and Ligeon, E., J. Appl. Phys. 65, 1499 (1989).Google Scholar