Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T01:48:24.390Z Has data issue: false hasContentIssue false

Amorphous carbon antireflective coatings in the 10 to 50 μm region of the far-IR

Published online by Cambridge University Press:  03 March 2011

Serhat Metin
Affiliation:
Department of Materials Science and Minerals Engineering, University of California at Berkeley, Berkeley, California 94720 and IBM/AdStaR, 5600 Cottle Road, San Jose, California 95193
James H. Kaufman
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120
David D. Saperstein
Affiliation:
IBM/AdStaR, 5600 Cottle Road, San Jose, California 95193
Campbell J. Scott
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120
James Heyman
Affiliation:
Lawrence Berkeley Laboratory and University of California at Berkeley, Berkeley, California 94720
Eugene E. Haller
Affiliation:
Lawrence Berkeley Laboratory and University of California at Berkeley, Berkeley, California 94720
Get access

Abstract

The efficiency of far-IR germanium photoconductive detectors can be markedly improved by antireflective coatings. Recently, there has been an effort to develop several micrometer thick, low stress, amorphous carbon films for this purpose. To date, films of no more than 1 to 2 μm have been reported in the literature. In this paper we report the deposition of low stress carbon films which are over 5 μm thick and are effective antireflective coatings at wavelengths of up to Λ = 43 μm. Minimal stress, a requirement for good adhesion, was achieved with a chemical vapor deposition process (CVD) by controlling the hydrocarbon partial pressure (2.2 mTorr) and by doping the carbon film with nitrogen.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yalamanchi, R. S. and Thutupalli, G. K. M., Thin Solid Films 164, 103 (1988).CrossRefGoogle Scholar
2Tsai, H. and Bogy, D. B., J. Vac. Sci. Technol. A 5 (6), 3287 (1987).CrossRefGoogle Scholar
3Bubenzer, A., Dischler, B., Brant, G., and Koidl, P., J. Appl. Phys. 54 (8), 4590 (1983).CrossRefGoogle Scholar
4Rieke, G. H., Werner, M. W., Thompson, R. I., Becklin, E. E., Hoffman, W. F., Houck, J. R., Low, F. J., Stein, W. A., and Wittebom, F. C., Science 231, 807 (1986).CrossRefGoogle Scholar
5Hummel, R. E., Electronic Properties of Materials (Springer-Verlag, New York, 1985), p. 131.CrossRefGoogle Scholar
6Enke, K., Third Topical Meeting on Optical Interference Coatings, Monterey, CA (1984).Google Scholar
7Bubenzer, A., Dischler, B., Brant, G., and Koidl, P., Opt. Eng. 23 (2), 153 (1984).CrossRefGoogle Scholar
8Dischler, B., Bubenzer, A., Koidl, P., and Sah, R. E., Third Optical Meeting on Optical Interference Coatings, Monterey, CA (1984).Google Scholar
9Enke, K., Thin Solid Films 80, 227 (1981).CrossRefGoogle Scholar
10Angus, J. C. and Heyman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
11Kaufman, J. H., Metin, S., and Saperstein, D. D., Phys. Rev. B 39 (18), 13053 (1989).CrossRefGoogle Scholar
12Hansen, W. L. and Haller, E. E., in Nuclear Radiation Detector Materials, edited by Haller, E. E., Kraner, H. W., and Higinbotham, W. A. (Mater. Res. Soc. Symp. Proc. 16, Elsevier Science Publishing, New York, 1983), p. 1.Google Scholar
13Palik, E. D., Handbook of Optical Constants of Solids (Academic Press, New York, 1985).Google Scholar
14Tuinstra, F. and Koening, J. L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
15Nir, D., Thin Solid Films 146, 27 (1987).CrossRefGoogle Scholar
16Memming, R., Tolle, H. J., and Wierenga, P. E., Thin Solid Films 143, 31 (1986).CrossRefGoogle Scholar
17Han, H-X. and Feldman, B. J., Solid State Commun. 65, 921 (1988).CrossRefGoogle Scholar
18Ojha, S. M., Norstrom, H., and McCulluch, D., Thin Solid Films 60, 213 (1979).CrossRefGoogle Scholar