Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T07:11:43.516Z Has data issue: false hasContentIssue false

Aqueous chemical solution deposition of ultrathin lanthanide oxide dielectric films

Published online by Cambridge University Press:  31 January 2011

An Hardy
Affiliation:
Hasselt University, Institute for Materials Research, Laboratory of Inorganic and Physical Chemistry, B-3590 Diepenbeek, Belgium; and XIOS Hogeschool Limburg, Department of Industrial Sciences and Technology (IWT), Universitaire Campus, B-3590 Diepenbeek, Belgium
Sven Van Elshocht
Affiliation:
IMEC vzw, B-3001 Heverlee, Belgium
Jan D’Haen
Affiliation:
IMEC vzw, Division IMOMEC, B-3590 Diepenbeek, Belgium; and Hasselt University, Institute for Materials Research, B-3590 Diepenbeek, Belgium
Olivier Douhéret
Affiliation:
IMEC vzw, Division IMOMEC, B-3590 Diepenbeek, Belgium
Stefan De Gendt
Affiliation:
IMEC vzw, B-3001 Heverlee, Belgium; and KULeuven, Department of Chemistry, B-3001 Heverlee, Belgium
Christoph Adelmann
Affiliation:
IMEC vzw, B-3001 Heverlee, Belgium
Matty Caymax
Affiliation:
IMEC vzw, B-3001 Heverlee, Belgium
Thierry Conard
Affiliation:
IMEC vzw, B-3001 Heverlee, Belgium
Thomas Witters
Affiliation:
IMEC vzw, B-3001 Heverlee, Belgium
Hugo Bender
Affiliation:
IMEC vzw, B-3001 Heverlee, Belgium
Olivier Richard
Affiliation:
IMEC vzw, B-3001 Heverlee, Belgium
Marc Heyns
Affiliation:
IMEC vzw, B-3001 Heverlee, Belgium
Marc D’Olieslaeger
Affiliation:
IMEC vzw, Division IMOMEC, B-3590 Diepenbeek, Belgium, and Hasselt University, Institute for Materials Research, B-3590 Diepenbeek, Belgium
Marlies K. Van Bael*
Affiliation:
Hasselt University, Institute for Materials Research, Laboratory of Inorganic and Physical Chemistry, B-3590 Diepenbeek, Belgium; and IMEC vzw, Division IMOMEC, B-3590 Diepenbeek, Belgium
Jules Mullens*
Affiliation:
Hasselt University, Institute for Materials Research, Laboratory of Inorganic and Physical Chemistry, B-3590 Diepenbeek, Belgium
*
a)Address all correspondence to these authors. e-mail: marlies.vanbael@uhasselt.be
b)Address all correspondence to these authors. e-mail: jules.mullens@uhasselt.be
Get access

Abstract

Ultrathin lanthanide (Nd, Pr, Eu, Sm) oxide films with functional dielectric properties down to 3.3 nm thickness were deposited by aqueous chemical solution deposition (CSD) onto hydrophilic SiO2/Si substrates. Precursor solutions were prepared from the oxides via an intermediate, solid Ln(III)citrate. A film heat treatment scheme was derived from thermogravimetric analysis of the precursor gels, showing complete decomposition by 600 °C. Crystalline phase formation in the films depended on the lanthanide, annealing temperature, and citric acid content in the precursor. Through variation of the precursor concentration and number of deposited layers, thickness series of uniform films were obtained down to ∼3 nm. The film uniformity was demonstrated both by atomic force microscopy and cross-section transmission electron microscopy. The lanthanide oxide films possessed good dielectric properties. It was concluded that aqueous CSD allows deposition of uniform ultrathin films and may be useful for the evaluation of new high-k candidate materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schwartz, R.W., Schneller, T.Waser, R.: Chemical solution deposition of electronic oxide films. C.R. Chim. 7, 433 2004CrossRefGoogle Scholar
2Alexe, M.Hesse, D.: Self-assembled nanoscale ferroelectrics. J. Mater. Sci. 41, 1 2006CrossRefGoogle Scholar
3Alexe, M., Harnagea, C.Hesse, D.: Non-conventional micro- and nanopatterning techniques for electroceramics. J. Electroceram. 12, 69 2004CrossRefGoogle Scholar
4Zhang, Q., Shaw, C.P., Huang, Z.Whatmore, R.W.: Sol-gel derived lead zirconate titanate thick films and their improved pyroelectric properties. Integr. Ferroelectr. 64, 207 2004CrossRefGoogle Scholar
5Waser, R., Schneller, T., Hoffmann-Eifert, S.Ehrhart, P.: Advanced chemical deposition techniques—from research to production. Integr. Ferroelectr. 36, 3 2001CrossRefGoogle Scholar
6Ricote, J., Holgado, S., Ramos, P.Calzada, M.L.: Piezoelectric ultrathin lead titanate films prepared by deposition of aquo-diol solutions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53, 2299 2006CrossRefGoogle ScholarPubMed
7Doyle, A.M., Rupprechter, G., Pfander, N., Schlogl, R., Kirschhock, C.E.A., Martens, J.A.Freund, H.J.: Ultra-thin zeolite films prepared by spin-coating - Silicalite-1 precursor solutions. Chem. Phys. Lett. 382, 404 2003CrossRefGoogle Scholar
8Chang, S.M.Doong, R.A.: ZrO2 thin films with controllable morphology and thickness by spin-coated sol-gel method. Thin Solid Films 489, 17 2005CrossRefGoogle Scholar
9Aoki, Y.Kunitake, T.: Solution-based fabrication of high-k gate dielectrics for next-generation metal-oxide semiconductor transistors. Adv. Mater.,16, 118 2004CrossRefGoogle Scholar
10Kingon, A.I., Maria, J.P.Streiffer, S.K.: Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032 2000CrossRefGoogle ScholarPubMed
11Wong, H.Iwai, H.: On the scaling issues and high-kappa replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron. Eng. 83, 1867 2006CrossRefGoogle Scholar
12Wilk, G.D., Wallace, R.M.Anthony, J.M.: High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 2001CrossRefGoogle Scholar
13Schlom, D.G.Haeni, J.H.: A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull. 27, 198 2002CrossRefGoogle Scholar
14Robertson, J.: High-dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 2006CrossRefGoogle Scholar
15Wagner, M., Heeg, T., Schubert, J., Zhao, C., Richard, O., Caymax, M., Afanas’ev, V.V.Mantl, S.: Preparation and characterization of rare earth scandates as alternative gate oxide materials. Solid-State Electron. 50, 58 2006CrossRefGoogle Scholar
16Christen, H.M., Jellison, G.E., Ohkubo, I., Huang, S., Reeves, M.E., Cicerrella, E., Freeouf, J.L., Jia, Y.Schlom, D.G.: Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior. Appl. Phys. Lett. 88, 262906 2006CrossRefGoogle Scholar
17Leskela, M., Kukli, K.Ritala, M.: Rare-earth oxide thin films for gate dielectrics in microelectronics. J. Alloys Compd. 418, 27 2006CrossRefGoogle Scholar
18Engström, O., Raeissi, B., Hall, S., Buiu, O., Lemme, M.C., Gottlob, H.D.B., Hurley, P.K.Cherkaoui, K.: Navigation aids in the search for future high-k dielectrics: Physical and electrical trends. Solid-State Electron. 51, 622 2007CrossRefGoogle Scholar
19Tseng, T.Y.Nalwa, H.S.: Aqueous solution based synthesis of nanostructured metal oxides in Handbook of Nanoceramics and Their Based Nanodevices,, edited by H. Van den Rul, M.K. Van Bael, A. Hardy, K. Van Werde, and J. Mullens (2006, in press)Google Scholar
20Schwartz, R.W.: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 1997CrossRefGoogle Scholar
21Van Bael, M.K., Nelis, D., Hardy, A., Mondelaers, D., Van Werde, K., D’Haen, J., Vanhoyland, G., Van den Rul, H., Mullens, J., Van Poucke, L.C., Frederix, F.Wouters, D.J.: Aqueous chemical solution deposition of ferroelectric thin films. Integr. Ferroelectr. 45, 113 2002CrossRefGoogle Scholar
22Van Elshocht, S., Hardy, A., De Gendt, S., Adelmann, C., Baumann, P.K., Brunco, D.P., Caymax, M., Conard, T., Delugas, P., Lehnen, P., Richard, O., Rohr, E., Shamiryan, D., Vos, R., Witters, T., Zimmerman, P., Van Bael, M.K., Mullens, J., Meuris, M.Heyns, M.: Alternative Gate Dielectric Materials., ECS2006 (Cancun, Mexico, 2006)CrossRefGoogle Scholar
23Vanhoyland, G., Pagnaer, J., D’Haen, J., Mullens, S.Mullens, J.: Characterization and structural study of lanthanum citrate trihydrate La(C6H5O7)(H2O)(2)·H2O. J. Solid State Chem. 178, 166 2005CrossRefGoogle Scholar
24Kragten, J.: Atlas of Metal-Ligand Equilibria in Aqueous Solution Chichester Horwood 1978Google Scholar
25Colthup, N.B., Daly, L.H.Wiberley, S.E.Introduction to Infrared and Raman Spectroscopy, 3rd ed.Academic Press San Diego 1990Google Scholar
26Kakihana, M., Tada, M., Shiro, M., Petrykin, V., Osada, M.Nakamura, Y.: Structure and stability of water soluble (NH4)8[Ti4(C6H4O7)4(O2)4].H2O. Inorg. Chem. 40, 891 2001CrossRefGoogle Scholar
27Narendar, Y.: Regulating oxide crystallization from Pb, Mg, Nb-carboxylate gels. PhD Thesis, Pennsylvania State University, University Park, Pennsylvania, 1996,Google Scholar
28Hardy, A., Vanhoyland, G., Geuzens, E., Van Bael, M.K., Mullens, J., Van Poucke, L.C.D’Haen, J.: Gel structure, gel decomposition and phase formation mechanisms in the aqueous solution-gel route to lanthanum substituted bismuth titanate. J. Sol.-Gel Sci. Technol. 33, 283 2005CrossRefGoogle Scholar
29 JCPDS Nos. 34-0392; 41-1089; 48-0056; 42-1121. International Center for Diffraction Data: Newton Square, PA, 2001Google Scholar
30Pétry, J., Vandervorst, W.Blasco, X.: Effect of N2 anneal on thin HfO2 layers studied by conductive atomic force microscopy. Microelectron. Eng. 72, 174 2004CrossRefGoogle Scholar
31Kosola, A., Paivasaari, J., Putkonen, M.Niinisto, L.: Neodymium oxide and neodymium aluminate thin films by atomic layer deposition. Thin Solid Films 479, 152 2005CrossRefGoogle Scholar
32Zhao, C., Roebben, G., Bender, H., Young, E., Haukka, S., Houssa, M., Naili, M., De Gendt, S., Heyns, M.Van Der Biest, O.: In situ crystallisation in ZrO2 thin films during high temperature x-ray diffraction. Microelectron. Reliab. 41, 995 2001CrossRefGoogle Scholar
33Miller, K.T., Lange, F.F.Marshall, D.B.: The instability of polycrystalline thin-films—Experiment and theory. J. Mater. Res. 5, 151 1990CrossRefGoogle Scholar
34Seifert, A., Vojta, A., Speck, J.S.Lange, F.F.: Microstructural instability in single-crystal thin films. J. Mater. Res. 11, 1470 1996CrossRefGoogle Scholar
35Szafraniak, I., Harnagea, C., Scholz, R., Bhattacharyya, S., Hesse, D.Alexe, M.: Ferroelectric epitaxial nanocrystals obtained by a self-patterning method. Appl. Phys. Lett. 83, 2211 2003CrossRefGoogle Scholar
36Roelofs, A., Schneller, T., Szot, K.Waser, R.: Towards the limit of ferroelectric nanosized grains. Nanotechnology 14, 250 2003CrossRefGoogle Scholar
37Olbrich, A., Ebersberger, B., Boit, C., Vancea, J.Hoffmann, H.: A new AFM-based tool for testing dielectric quality and reliability on a nanometer scale. Microelectron. Reliab. 39, 941 1999CrossRefGoogle Scholar
38Van Elshocht, S., Hardy, A., Witters, T., Adelmann, C., Caymax, M., Conard, T., De Gendt, S., Franquet, A., Heyns, M., Van Bael, M.K.Mullens, J.: Aqueous chemical solution deposition—Fast screening method for alternative high-k materials applied to Nd2O3. Electrochem. Solid State Lett. 10, G15 2007CrossRefGoogle Scholar
39Van Elshocht, S., Hardy, A., Adelmann, C., Caymax, M., Conard, T., Franquet, A., Richard, O., Van Bael, M.K., Mullens, J.De Gendt, S.: Screening of High-k Layers in MIS and MIM Capacitors Using Aqueous Chemical Solution Deposition., ECS2007 (Washington, DC, 2007)CrossRefGoogle Scholar
40Hauser, J.R.Ahmed, K.: Int. Conf. on Characterization and Metrology for ULSI Technology AIP New York 1998 235CrossRefGoogle Scholar
41Song, M.D.Rhee, S.W.: Direct liquid injection metal organic chemical vapor deposition of Nd2O3 thin films using Tris(2,2,6,6-tetramethyl-3,5-heptanedionato) neodymium. Thin Solid Films 492, 19 2005CrossRefGoogle Scholar