Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T15:08:07.940Z Has data issue: false hasContentIssue false

Barium titanate/noble metal laminates prepared by the oxidation of solid metallic precursors

Published online by Cambridge University Press:  03 March 2011

M.M. Antony
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210-1179
K.H. Sandhage
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210-1179
Get access

Abstract

A novel and attractive method for preparing multicomponent electronic ceramics and ceramic-metal composites is the oxidation of solid metallic precursors (SMP). This metallurgical processing route consists of the following steps: (i) preparation of a solid metallic precursor containing the proper ratio of elements for the final ceramic or ceramic-metal composite, (ii) compaction and forming of the metallic precursor into a desired shape, and (iii) oxidation to produce a monolithic ceramic or ceramic-metal composite. While the SMP method has been used to prepare wires and tapes containing a variety of superconducting oxides, this method has not been widely used to synthesize other electronic ceramics. In this paper, the synthesis of dielectric BaTiO3/noble metal laminates from solid metallic precursors is discussed. Ba–Ti precursor powders have been produced by solid-state mechanical alloying. The precursor powder was sealed inside noble metal tubes and rolled to form thin Ba–Ti/noble metal laminates. Exposure of the Ba–Ti core in such tapes to temperatures ≥ 300 °C in pure oxygen resulted in rapid oxidation. Post-oxidation annealing at elevated temperatures (≥900 °C) yielded dielectric BaTiO3/Ag or BaTiO3/Pd laminates.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Goodman, G., in Ceramic Materials for Electronics, edited by Buchanan, R. C. (Marcel Dekker, Inc., New York, 1986), p. 98.Google Scholar
2Newnham, R. E. and Ruschau, G. R., J. Am. Ceram. Soc. 74, 463 (1991).CrossRefGoogle Scholar
3Otto, A., Masur, L. J., Gannon, J., Podtburg, E., Daly, D., Yurek, G. J., and Malozemoff, A. P., IEEE Trans. Appl. Supercond. (in press).Google Scholar
4Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibuta, N., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., presented at Applied Superconductivity Conf., Snowmass Village, CO, Sept. 24–28, 1990.Google Scholar
5Hikata, T., Mukai, H., Sato, K., and Hitotsuyanagi, H., Sumitomo Electric Tech. Rev. 29, 45 (1990).Google Scholar
6Dyson, A. F., Electrocomponent Sci. Technol. 11, 53 (1983).CrossRefGoogle Scholar
7Pepin, J. G., Borland, W., O'Callaghan, P., and Young, R.J.S., J. Am. Ceram. Soc. 72, 2287 (1989).CrossRefGoogle Scholar
8Sandhage, K. H., Antony, M. M., and Schmutzler, H. J., Ceram. Trans. 32, 49 (1993).Google Scholar
9Sandhage, K. H., J. Electrochem. Soc. 139, 1662 (1992).CrossRefGoogle Scholar
10Sandhage, K. H., Masur, L. J., Smith, G., Poole, J., and McKimpson, M., Proc. TMS Symp. High-rc Superconducting Compounds III, New Orleans, LA, Feb. 17–21, 1991, p. 347.Google Scholar
11Yurek, G. J., Vander Sande, J.B., Wang, W-X., and Rudman, D.A., J. Electrochem. Soc. 134, 2635 (1987).CrossRefGoogle Scholar
12Lu, Y. Z., Haldar, P., Markiewicz, R., Sridhar, S., and Giessen, B. C., Mater. Lett. 5, 380 (1987).CrossRefGoogle Scholar
13Matsuzaki, K., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 27, L195 (1988).CrossRefGoogle Scholar
14Kogure, T., Otto, A., and Vander Sande, J.B., Physica C 157, 351 (1989).CrossRefGoogle Scholar
15Luo, J. S., Chevalier, J. P., and Michel, D., Mater. Sci. Eng. B 3, 325 (1989).CrossRefGoogle Scholar
16Gao, W., Li, S-C., Rudman, D. A., Yurek, G. J., and Vander Sande, J.B., J. Electrochem. Soc. 137, 1951 (1990).CrossRefGoogle Scholar
17Sandhage, K. H., Carter, W., Masur, L., Joshi, C., Hsu, H., and Yurek, G. J., Physica C 177, 95 (1991).CrossRefGoogle Scholar
18Early, E. A., Simnad, M. T., and Maple, M. B., J. Appl. Phys. 71, 1327 (1992).CrossRefGoogle Scholar
19Binary Alloy Phase Diagrams, edited by Massalski, T. B. (American Society for Metals, Metals Park, OH, 1986), Vols. 1 and 2, pp. 8, 436.Google Scholar
20Handbook of Chemistry and Physics, edited by Weast, R. C., 55th ed. (CRC Press, Cleveland, OH, 1974), D-190.Google Scholar
21Kubaschewski, O. and Hopkins, B. E., Oxidation of Metals and Alloys, 2nd ed. (Butterworth, London, 1962), pp. 40, 213.Google Scholar
22Pilling, N. B. and Bedworth, R. E., J. Inst. Metals 29, 529 (1923).Google Scholar
23Leontis, T. E. and Rhines, F. N., Trans. AIME 166, 265 (1946).Google Scholar
24Fassell, W. M., Gulbransen, L. B., Lewis, J. R., and Hamilton, J. H., J. Metals 171, 522 (1951).Google Scholar
25Cubicciotti, D., J. Am. Chem. Soc. 74, 557 (1952).CrossRefGoogle Scholar
26Chandrasekharaiah, M. S. and Margrave, J. L., J. Electrochem. Soc. 108, 1008 (1961).CrossRefGoogle Scholar
27Streiff, R., Acta Metall. 16, 1227 (1968).CrossRefGoogle Scholar
28Kofstad, P., High-Temperature Corrosion (Elsevier Applied Science, New York, 1988), p. 289.Google Scholar
29Jenkins, A. E., J. Inst. Met. 82, 213 (1953).Google Scholar
30Wallwork, G. R. and Jenkins, A. E., J. Electrochem. Soc. 106, 10 (1959).CrossRefGoogle Scholar
31Kofstad, P., Anderson, P. B., and ICrudtaa, O. J., J. Less-Comm. Met. 3, 89 (1961).CrossRefGoogle Scholar
32Unnam, J., Shenoy, R. N., and Clark, R. K., Oxid. Met. 26, 231 (1986).CrossRefGoogle Scholar
33Stringer, J., Acta Metall. 8, 758 (1960).CrossRefGoogle Scholar
34Bertrand, G., Jarraya, K., and Chaix, J. M., Oxid. Met. 21, 1 (1983).CrossRefGoogle Scholar
35Lopes Gomes, J. E. and Huntz, A. M., Oxid. Met. 14, 249 (1980).CrossRefGoogle Scholar
36Outlaw, R. A., Sankaran, S. N., Hoflund, G. B., and Davidson, M. R., J. Mater. Res. 3, 1378 (1988).CrossRefGoogle Scholar
37Ramanarayanan, T. A. and Rapp, R. A., Metall. Trans. 3, 3239 (1972).CrossRefGoogle Scholar
38Eichenaur, W. and Miiller, G., Z. Metallk. 53, 321 (1962).Google Scholar