Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T16:46:16.944Z Has data issue: false hasContentIssue false

Characterization and superconducting properties of phases in the Bi–Sr–Cu–O system

Published online by Cambridge University Press:  31 January 2011

B. C. Chakoumakos
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, Tennessee 37831-6056
P. S. Ebey
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, Tennessee 37831-6056
B. C. Sales
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, Tennessee 37831-6056
Edward Sonder
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, Tennessee 37831-6056
Get access

Abstract

Phase formation in the system Bi–Sr–Cu–O has been examined as a function of composition, temperature, ambient atmosphere, cooling history, and annealing time. Ceramic processing and melt crystallization techniques were used. For the ceramic materials (using Bi2O3, SrCO3, and CuO) processed at 700 °C in air the Bi2Sr2CuO6 composition (221) crystallizes to a mixture of CuO, SrCO3, and the rhombohedral Bi2O3 · xSrO solid solution. At 800–830 °C in air for short durations (5 min to 2 h) the reacted products consist principally of the ideal 221 phase with minor amounts of CuO. For longer reaction times (2–400 h) the reacted products consist of the ideal 221-type structure with c = 24.64 Å and a = 3.804 Å, a “collapsed” 221 structure with c = 23.6 Å, and CuO. With increasing reaction time the “collapsed” 221 phase grows gradually at the expense of the ideal 221 phase. The “collapsed” 221 phase is not an oxycarbonate and appears to be a distinct ternary compound near the 221 composition, with a layered structure having a 1 Å smaller stacking repeat. The ideal 221 phase is a solid solution with variable Sr content. With decreasing Sr in the starting mixture [2 to 1.25 atoms per formula unit (afu)] we observe the following: (1) the formation of the “collapsed” 221 structure is inhibited; (2) for the ideal 221 phase the c-cell dimension decreases significantly (0.2 Å) and the a-cell dimension increases slightly (0.02 Å); (3) the low temperature resistivity behavior changes from superconducting with Tc onset of 6 K for Sr>1.5 afu to semiconducting for Sr > 1.5 afu; (4) the positions of the superlattice peaks around the (001) reflections become more incommensurate with respect to the parent structure. Rapid quenching (<5 s) from temperatures near the melting point (900 °C) can raise the superconducting Tc onset to 9 K. Independent of the cell variation with Sr content, quenching causes the c-cell dimension to expand by 0.03 Å on average while the a-cell dimension remains invariant. A small number of oxygen vacancies are quenched in from high temperature, and presumably originate in the Bi2O2 layer. As grown from the melt, crystals of the ideal 221 phase exhibit semiconducting behavior at low temperature; but with an additional high-temperature anneal in oxygen, metallic resistivity is restored with a superconducting onset near 5 K. Ca doping does not increase Tc in the ideal 221 phase. La and Y substitution occurs for Sr in the ideal 221 phase and ruins superconductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Michel, C., Provost, J., Deslandes, F., Raveau, B., Beille, J., Cabanel, R., Lejay, P., Sulpice, A., Tholence, J. L., Tournier, R., Chevallier, B., Demazeau, G., and Etourneau, J., Z. Phys. B 68, 417 (1987).CrossRefGoogle Scholar
2Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B 68, 421 (1987).CrossRefGoogle Scholar
3Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
4Hazen, R. M., Finger, L. W., Angel, R. J., Prewitt, C. T., Ross, N. L., Hadidiacos, G.G., Heaney, P.J., Veblen, D. R., Sheng, Z.Z., and Hermann, A. M., Phys. Rev. Lett. 60, 1657 (1988).CrossRefGoogle Scholar
5Parkin, S. S. P., Lee, V. Y., Nazzal, A. I., Savoy, R., Beyers, R., and LaPlaca, S. J., Phys. Rev. Lett. 61, 750 (1988).CrossRefGoogle Scholar
6Haldar, P., Roig-Janicki, A., Sridhar, S., and Giessen, B. C., Mater. Lett. 7, 1 (1988).CrossRefGoogle Scholar
7Haldar, P., Chen, K., Maheswaran, B., Roig-Janicki, A., Jaggi, N. K., Markiewicz, R. S., and Giessen, B. C., Science 241, 1198 (1988).CrossRefGoogle Scholar
8Subramanian, M. A., Torardi, C. C., Gopalakrishnan, J., Calabrese, J. C., Morrissey, K. J., Askew, T. R., Flippen, R. B., and Sleight, A. W., Science 242, 249 (1988).CrossRefGoogle Scholar
9Sillen, L.G. and Aurivillius, B., Z. Kristallogr. 101, 483 (1939).CrossRefGoogle Scholar
10Levin, E.M. and Roth, R. S., J. Res. Nat. Bur. Stand. 68A, 197 (1964).CrossRefGoogle Scholar
11Takahashi, T., Iwahara, H., and Nagai, Y., J. Appl. Electrochem. 2, 97 (1972).CrossRefGoogle Scholar
12Guillermo, R., Conflant, P., Boivin, J-C., and Thomas, D., Rev. Chim. Minerale 15, 153 (1978).Google Scholar
13Conflant, P., Boivin, J-C., and Thomas, D., J. Solid State Chem. 18, 133 (1976).CrossRefGoogle Scholar
14Cassedanne, J. and Campelo, C. P., An. Acad. Brasil. Cien. 38, 35 (1966).Google Scholar
15Arpe, V. R. and Müller-Buschbaum, H., Z. Anorg. Allg. Chem. 426, 1 (1976).CrossRefGoogle Scholar
16Boivin, J-C., Trehoux, J., and Thomas, D., Bull. Mineral. 99, 193 (1976).Google Scholar
17Teske, C.L. and Müller-Buschbaum, H., Z. Anorg. Allg. Chem. 371, 325 (1969).CrossRefGoogle Scholar
18Teske, C. L. and Müller-Buschbaum, H., Z. Anorg. Allg. Chem. 379, 234 (1970).CrossRefGoogle Scholar
19Teske, C. L. and Müller-Buschbaum, H., Z. Anorg. Allg. Chem. 379, 113 (1970).CrossRefGoogle Scholar
20Müller-Buschbaum, H., Angwandte Chem. Inter. Ed. Engl. 16, 674 (1977).CrossRefGoogle Scholar
21Akimitsu, J., Yamazaki, A., Sawa, H., and Fujiki, H., Jpn. J. Appl. Phys. 26, L208 (1987).CrossRefGoogle Scholar
22Torardi, C. C., Subramanian, M. A., Calabrese, J. C., Gopalakrishnan, J., McCarron, E.M., Morrissey, K.J., Askew, T. R., Flippen, R.B., Chowdhry, U., and Sleight, A. W., Phys. Rev. B 38, 225 (1988).CrossRefGoogle Scholar
23Torrance, J. B., Tokura, Y., LaPlaca, S. J., Huang, T. C., Savoy, R. J., and Nazzal, A. I., Solid State Commun. 66, 703 (1988).CrossRefGoogle Scholar
24Sawa, H., Fujiki, H., Tomimoto, K., and Akimitsu, J., Jpn. J. Appl. Phys. 27, L830 (1988).CrossRefGoogle Scholar
25Onoda, M. and Sato, M., Solid State Commun. 67, 799 (1988).CrossRefGoogle Scholar
26McCarron, E. M. III , Subramanian, M. A., Calabrese, J. C., and Harlow, R. L., Mater. Res. Bull. 23, 1355 (1988).CrossRefGoogle Scholar
27Siegrist, T., Schneemeyer, L. F., Sunshine, S.A., Waszczak, J.V., and Roth, R. S., Mater. Res. Bull. 23, 1429 (1988).CrossRefGoogle Scholar
28Amador, J., Casais, M.T., Cascales, C., Castro, A., Pedro, M. de, and Rasines, I., Mater. Res. Soc. 1988 Fall Meeting, Final Program and Abstracts, 173 (1988).Google Scholar
29Chakoumakos, B.C., Sales, B.C., and Sonder, E., Mater. Res. Soc. 1988 Fall Meeting, Final Program and Abstracts, 164 (1988).Google Scholar
30Saggio, J. A., Sugata, K., Hahn, J., Hwu, S-J., Poeppelmeier, K. R., and Mason, T. O., J. Am. Ceram. Soc. 72, 849 (1989).CrossRefGoogle Scholar
31Bordet, P., Capponi, J. J., Chaillout, C., Chenavas, J., Hewat, A. W., Hewat, E. A., Hodeau, J. L., Marezio, M., Tholence, J. L., and Tranqui, D., Physica C 153-155, 623 (1988).CrossRefGoogle Scholar
32Kajitani, T., Kusaba, K., Kikuchi, M., Kobayashi, N., Syono, Y., Williams, T. B., and Hirabayashi, M., Jpn. J. Appl. Phys. 27, L587 (1988).CrossRefGoogle Scholar
33Subramanian, M. A., Torardi, C.C., Gopalakrishnan, J., Gai, P. L., Calabrese, J.C., Askew, T. R., Flippen, R.B., Chowdhry, U., Sleight, A. W., Lin, J. J., and Poon, S. J., Physica C 153-155, 608 (1988).CrossRefGoogle Scholar
34Sunshine, S.A., Siegrist, T., Schneemeyer, L. F., Murphy, D.W., Cava, R. J., Batlogg, B., Dover, R. B. van, Fleming, R. M., Glarum, S.H., Nakahara, S., Farrow, R., Krajewski, J. J., Zahurak, S. M., Waszczak, J. V., Marshall, J.H., Marsh, P., Rupp, L. W. Jr , and Peck, W.F., Phys. Rev. B 38, 893 (1988).CrossRefGoogle Scholar
35Takayama-Muromachi, E., Uchida, Y., Ono, A., Izumi, F., Onoda, M., Matsui, Y., Kosuda, K., Takekawa, S., and Kato, K., Jpn. J. Appl. Phys. 27, L365 (1988).CrossRefGoogle Scholar
36Tarascon, J. M., McKinnon, W. R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L. H., Hull, G. W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).CrossRefGoogle Scholar
37Chakoumakos, B.C., Budai, J.D., Sales, B.C., and Sonder, Edward in High Temperature Superconductors: Relationships between Properties, Structure, and Solid-State Chemistry, edited by Jorgensen, J. R., Kitazawa, K., Tarascon, J. M., Thompson, M., and Torrance, J. B. (Materials Research Society, Pittsburgh) in press.Google Scholar
38Sonder, Edward, Chakoumakos, B. C., and Sales, B. C. (to be published).Google Scholar
39Cheetham, A.K., Chippindale, A.M., and Hibble, S.J., Nature 333, 21 (1988).CrossRefGoogle Scholar
40Buckley, R. G., Tallon, J.L., Brown, I.W.M., Presland, M.R., Flower, N.E., Gilberd, P. W., Bowden, M., and Milestone, N.B., Physica C 156, 629 (1988).CrossRefGoogle Scholar
41Hewat, A.W., Bordet, P., Capponi, J.J., Chaillout, C., Chenavas, J., Godinho, M., Hewat, E. A., Hodeau, J.L., and Marezio, M., Physica C 156, 369 (1988).CrossRefGoogle Scholar
42Huang, T. C., Lee, V. Y., Karimi, R., Beyers, R., and Parkin, S.S.P., Mater. Res. Bull. 23, 1307 (1988).CrossRefGoogle Scholar
43Schreiber, H. D. and Balazs, G. B., Non-Cryst, J.. Solids 71, 59 (1985).Google Scholar
45Ebey, P. S., Chakoumakos, B. C., Sales, B. C., and Sonder, Edward (to be published).Google Scholar
45Wu, M. K., Loo, B. H., Peters, P. N., and Huang, C. Y., in High Temperature Superconductivity, edited by Metzger, R. M. (Gordon and Breach Science Pub., New York, 1989), p. 23.Google Scholar
46Chakoumakos, B. C., Sales, B. C., and Sonder, Edward (to be published).Google Scholar
47Scholder, R., Ganter, K-W., Glaser, H., and Merz, G., Z. Anorg. Allg. Chem. 319, 375 (1963).CrossRefGoogle Scholar
48Onoda, M., Sera, M., Fukuda, K., Kondoh, S., Sato, M., Den, T., Sawa, H., and Akimitsu, J., Solid State Commun. 66, 189 (1988).CrossRefGoogle Scholar
49Darriet, J., Lirzin, A. Le, Marquestaut, E., Lepine, B., Chevalier, B., and Etourneau, J., Solid State Commun. 69, 739 (1989).CrossRefGoogle Scholar