Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T21:29:15.819Z Has data issue: false hasContentIssue false

Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films

Published online by Cambridge University Press:  31 January 2011

R. W. Schwartz
Affiliation:
Sandia National Laboratories, Materials and Process Sciences Center, Albuquerque, New Mexico 87185
J. A. Voigt
Affiliation:
Sandia National Laboratories, Materials and Process Sciences Center, Albuquerque, New Mexico 87185
B. A. Tuttle
Affiliation:
Sandia National Laboratories, Materials and Process Sciences Center, Albuquerque, New Mexico 87185
D. A. Payne
Affiliation:
Department of Materials Science and Engineering, Seitz Materials Research Laboratory, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
T. L. Reichert
Affiliation:
Sandia National Laboratories, Materials and Process Sciences Center, Albuquerque, New Mexico 87185
R. S. DaSalla
Affiliation:
Sandia National Laboratories, Materials and Process Sciences Center, Albuquerque, New Mexico 87185
Get access

Abstract

Lead zirconate titanate (PZT 40/60) thin films were fabricated on electroded silicon wafers using chemical solution deposition. Two different chelating agents, acetic acid and acetylacetone, were used in the synthesis of the precursor solutions. The microstructure of the acetylacetone-derived film was characterized by nucleation at the platinum electrode and a columnar growth morphology (˜100−200 nm lateral grain size). In contrast, the acetic acid-derived film was characterized by both columnar grains nucleated at the electrode, and larger (˜1 μm) grains nucleated at the surface of the film. Using Fourier transform infrared (FTIR) diffuse reflectance spectroscopy, we also noted that the pyrolysis behavior of the films was dependent on the chelating agent employed. The acetylacetone-derived films, which displayed only one nucleation event, were also characterized by a higher pyrolysis temperature than the acetic acid-derived films. Previously, microstructural differences of this nature were attributed to variations in “precursor structure.” In this paper, we discuss an alternative mechanism for the observed microstructural variations in films prepared from different solution precursors. In the model proposed, we discuss how changes in film pyrolysis temperature result in a change in film crystallization temperature, and hence, a change in the effective driving force for crystallization. We show how the change in crystallization driving force is expected to impact the thin film microstructure due to the accompanying variations that occur in the barrier heights for interface (lower electrode) and surface nucleation. A standard approach to nucleation in glasses is used as the basis of the proposed model. Finally, we also discuss how the model can be used to understand the observed effects of heating rate and thickness on the microstructure of solution-derived thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dimos, D., Lockwood, S. J., Schwartz, R. W., and Rodgers, M. S., IEEE Trans. on Components, Packaging, and Manufacturing Tech. A 18, 174 (1995).CrossRefGoogle Scholar
2.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
3.Land, C. E., J. Am. Ceram. Soc. 71 (11), 905 (1988).CrossRefGoogle Scholar
4.Vest, R. W. and Xu, J., Ferroelectrics 93, 21 (1989).CrossRefGoogle Scholar
5.Budd, K. D., Dey, S. K., and Payne, D. A., Brit. Ceram. Soc. Proc. 36, 107 (1985).Google Scholar
6.Lakeman, C. D. E., Campion, J-F., and Payne, D. A., in Ferroelectric Films, edited by Bhalla, A. S. and Nair, K. M. (Ceramic Trans. 25, American Ceramic Society, Westerville, OH, 1992), pp. 413439.Google Scholar
7.Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64 (5), 2717 (1988).CrossRefGoogle Scholar
8.Schwartz, R. W., Bunker, B. C., Dimos, D. B., Assink, R. A., Tuttle, B. A., Tallant, D. R., and Weinstock, I. A., Integrated Ferro. 2, 243 (1992).CrossRefGoogle Scholar
9.Chen, C., Ryder, D. F., Jr., and Spurgeon, W. A., J. Am. Ceram. Soc. 72 (8), 1495 (1989).Google Scholar
10.Lakeman, C. D. E. and Payne, D. A., J. Am. Ceram. Soc. 75 (11), 3091 (1992).CrossRefGoogle Scholar
11.Schwartz, R. W., Boyle, T. J., Lockwood, S. J., Sinclair, M. B., Dimos, D., and Buchheit, C. D., Integrated Ferro. 7, 259 (1995).CrossRefGoogle Scholar
12.Kushida, K., Udayakumar, K. R., Krupanidhi, S. B., and Cross, L. E., J. Am. Ceram. Soc. 76 (5), 1345 (1989).CrossRefGoogle Scholar
13.Nashimoto, K., Cima, M. J., McIntyre, P. C., and Rhine, W. E., J. Mater. Res. 10, 2564 (1995).CrossRefGoogle Scholar
14.Nashimoto, K. and Nakamura, S., Jpn. J. Appl. Phys. 33, Pt. 1, No. 9B, 5147 (1994).Google Scholar
15.Ramamurthi, S. and Payne, D. A., J. Am. Ceram. Soc. 73 (8), 2547 (1990).CrossRefGoogle Scholar
16.Schwartz, R. W., Ph.D. Thesis, University of Illinois (1989).Google Scholar
17.Coffman, P. R. and Dey, S. K., J. Sol-Gel Sci. Technol. 1, 251 (1994).CrossRefGoogle Scholar
18.Schwartz, R. W., Assink, R. A., and Headley, T. J., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. A. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), pp. 245254.Google Scholar
19.Assink, R. A. and Schwartz, R. W., Chem. Mater. 5 (4), 511 (1993).CrossRefGoogle Scholar
20.Schwartz, R. W., Assink, R. A., Dimos, D., Sinclair, M. B., Boyle, T. J., and Buchheit, C. D., in Ferroelectric Thin Films IV, edited by Desu, S. B., Tuttle, B. A., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), pp. 377387.Google Scholar
21.Tuttle, B. A., Voigt, J. A., Goodnow, D. C., Lamppa, D. L., Headley, T. J., Eatough, M. O., Zender, G., Nasby, R. D., and Rodgers, S. M., J. Am. Ceram. Soc. 76 (6), 1537 (1989).Google Scholar
22.Haaland, D. M., Sandia National Laboratories, private communication. In previous studies with sol-gel derived alumina, a broad resonance at ˜2300 cm21 was attributed to entrapped CO2. The width of the resonance was believed to be due to the distribution of pore sizes within the material.Google Scholar
23.Schwartz, R. W., Voigt, J. A., Boyle, T. J., Christenson, T. A., and Buchheit, C. D., Ceram. Eng. Sci. Proc. 16 (5), 1045 (1995).CrossRefGoogle Scholar
24.Shih, W-H. and Lu, Q., in Amorphous Insulating Thin Films, edited by Kanicki, J., Warren, W. L., Devine, R. A. B., and Matsumura, M. (Mater. Res. Soc. Symp. Proc. 284, Pittsburgh, PA, 1993), pp. 481486.Google Scholar
25.Brinker, C. J. and Scherer, G. W., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D. R. (John Wiley & Sons, Inc., New York, 1984), pp. 4359.Google Scholar
26.Roy, R., J. Am. Ceram. Soc. 52, 344 (1969).CrossRefGoogle Scholar
27.Tuttle, B. A., Headley, T. J., Bunker, B. C., Schwartz, R. W., Zender, T. J., Hernandez, C. L., Goodnow, D. C., Tissot, R. J., and Michael, J., J. Mater. Res. 7, 1876 (1992).CrossRefGoogle Scholar
28.Wilkinson, A. P., Speck, J. S., Cheetham, A. K., Natarajan, S., and Thomas, J. M., Chem. Mater. 6 (6), 750 (1994).Google Scholar
29.Voigt, J. A., Tuttle, B. A., Headley, T. J., and Lamppa, D. L., in Ferroelectric Thin Films IV, edited by Desu, S. B., Tuttle, B. A., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 361, Pittsburgh, PA, 1995), pp. 395402.Google Scholar
30.Schwartz, R. W. and Reichert, T. L., unpublished results.Google Scholar
31.Schwartz, R. W., Payne, D. A., and Holland, A. J., in Ceramic Powder Processing Science, edited by Hausner, H., Messing, G. R., and Hirano, S. (Deutsche Keramische Gesellschaft, 1989), pp. 165172.Google Scholar