Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T20:00:10.151Z Has data issue: false hasContentIssue false

Comparative fractography of chemical vapor and combustion deposited diamond films

Published online by Cambridge University Press:  31 January 2011

H. A. Hoff
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000
A. A. Morrish
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000
J. E. Butler
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000
B. B. Rath
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000
Get access

Abstract

Polycrystalline diamond films of several thicknesses have been fractured by manual bending and examined by scanning electron microscopy. These films have been deposited in controlled environments at low pressures by chemical vapor deposition and in ambient atmosphere with an oxygen-acetylene torch. Fracture surfaces in the low pressure depositions exhibit cleavage steps across the grains. These surfaces, independent of thickness, are primarily transgranular, attesting to the inherent strength of the deposits. However, the ambient deposited diamond has primarily intergranular fracture indicative of weak grain boundaries. Internal defects, observed with transmission electron microscopy, such as twins, stacking faults, and dislocations, occur generally in both types of deposition with no apparent preference for location or type of deposition.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angus, J.C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
2DeVries, R. C., Ann. Rev. Mater. Sci. 17, 161 (1987).CrossRefGoogle Scholar
3Hanssen, L. M., Carrington, W. A., Butler, J. E., and Snail, K. A., Mater. Lett. 7, 289 (1988).CrossRefGoogle Scholar
4Carrington, W. A., Hanssen, L. M., Snail, K. A., Oakes, D. B., and Butler, J. E., Metall. Trans. A 20A, 1282 (1989).CrossRefGoogle Scholar
5Lawn, B. R. and Wilshaw, T. R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1975).Google Scholar
6Gigi, P. D., in High Pressure Science and Technology, edited by Timmerhaus, K. D. and Barber, M. S. (Plenum Press, New York, 1979), Vol. 1, p. 914.Google Scholar
7Trueb, L. F. and Butterman, W. C., Am. Min. 54, 412 (1969).Google Scholar
8Dunn, K. J. and Lee, M., J. Mater. Sci. 14, 882 (1979).CrossRefGoogle Scholar
9Walmsley, J. C. and Lang, A. R., J. Mater. Sci. Lett. 2, 785 (1983).CrossRefGoogle Scholar
10Williams, B.E. and Glass, J.T., J. Mater. Res. 4, 373 (1989).CrossRefGoogle Scholar
11Zhu, W., Badzian, A.R., and Messier, R., J. Mater. Res. 4, 659 (1989).CrossRefGoogle Scholar
12Butler, J. E., Celie, F. G., Oakes, D. B., Hanssen, L. M., Carrington, W. A., and Snail, K. A., High Temp. Sci. (1990, in press).Google Scholar
13Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., J. Cryst. Growth 62, 642 (1983).CrossRefGoogle Scholar
14Hanssen, L.M., Snail, K. A., Carrington, W. A., Butler, J. E., Kellogg, S., and Oakes, D. B., Thin Solid Films (1990, in press).Google Scholar
15Sato, Y. and Kamo, M., Surf. Coat. Technol. 39/40, 183 (1989).CrossRefGoogle Scholar
16Clausing, R. E., Heatherly, L., More, K. L., and Begun, G. M., Surf. Coat. Technol. 39/40, 199 (1989).CrossRefGoogle Scholar
17Oakes, D. B., Butler, J.E., Carrington, W.A., Snail, K.A., and Hanssen, L. M., J. Appl. Phys. (1990, in press).Google Scholar
18Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
19Snail, K. A., Hanssen, L. M., Morrish, A. A., and Carrington, W. A., in Diamond Optics II, edited by Feldman, A. and Holly, S. (Society of Photo-Optical Instrumentation Engineers, 1990), Vol. 1146, p. 144.CrossRefGoogle Scholar
20Snail, K.A., Morrish, A.A., Priest, R.G., and Hanssen, L. M. (1990, private communication).Google Scholar
21Vardiman, R.G., Void, C.L., Snail, K.A., Butler, J.E., and Pande, C.S., Mater. Lett. 8, 468 (1990).CrossRefGoogle Scholar
22Void, C.L., (1990, private communication).Google Scholar
23Hoff, H. A., Morrish, A. A., Carrington, W. A., Butler, J. E., and Rath, B. B., in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R. F., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1989).Google Scholar
24Yarbrough, W. A. and Messier, R. F., Science 247, 688 (1990).CrossRefGoogle Scholar
25Freitas, J. A. Jr., Butler, J. E., Bishop, S. G., Carrington, W. A., and Strom, U., in Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R. F., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1989).Google Scholar
26Hoff, H.A., Snail, K.A., Morrish, A.A., and Butler, J.E., Ceram. Trans. (1990, in press).Google Scholar