Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T05:17:01.235Z Has data issue: false hasContentIssue false

Comparing the pitting corrosion behavior of prominent Zr-based bulk metallic glasses

Published online by Cambridge University Press:  22 December 2014

Petre Flaviu Gostin*
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, Dresden D-01171, Germany
Dimitri Eigel
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, Dresden D-01171, Germany; and Department of Chemistry and Food Chemistry, Faculty of Science, TU Dresden, Dresden D-01069, Germany
Daniel Grell
Affiliation:
Materials Testing, University of Kaiserslautern, Gottlieb-Daimler-Straße, Kaiserslautern D-67663, Germany
Jürgen Eckert
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, Dresden D-01171, Germany; and Institute of Materials Science, Faculty of Mechanical Science and Engineering, TU Dresden, Dresden D-01062, Germany
Eberhard Kerscher
Affiliation:
Materials Testing, University of Kaiserslautern, Gottlieb-Daimler-Straße, Kaiserslautern D-67663, Germany
Annett Gebert
Affiliation:
Leibniz-Institute for Solid State and Materials Research IFW Dresden, Dresden D-01171, Germany
*
a)Address all correspondence to this author. e-mail: f.p.gostin@ifw-dresden.de
Get access

Abstract

Five well-known Zr-based alloys of the systems Zr–Cu–Al–(Ni–Nb, Ni–Ti, Ag) (Cu = 15.4–36 at.%) with the highest glass-forming ability were comparatively analyzed regarding their pitting corrosion resistance and repassivation ability in a chloride-containing solution. Potentiodynamic polarization measurements were conducted in the neutral 0.01 M Na2SO4 + 0.1 M NaCl electrolyte and local corrosion damages were subsequently investigated with high resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive x-ray spectroscopy (EDX). Both pitting and repassivation potential correlate with the Cu concentration, i.e., those potentials decrease with increasing Cu content. Pit morphology is not composition dependent: while initially hemispherical pits then develop an irregular shape and a porous rim. Corrosion products are rich in Cu, O, and often Cl species. A combination of low Cu and high Nb or Ti contents is most beneficial for a high pitting resistance of Zr-based bulk metallic glasses. The bulk glassy Zr57Cu15.4Al10Ni12.6Nb5 (Vit 106) and Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit 105) alloys exhibit the highest pitting resistance.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

References

REFERENCES

Suryanarayana, C. and Inoue, A.: Bulk Metallic Glasses (CRC Press, Boca Raton, 2011).Google Scholar
Gebert, A., Mummert, K., Eckert, J., and Schultz, L.: Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy. Mater. Corros. 48, 293 (1997).Google Scholar
Mondal, K., Murty, B.S., and Chatterjee, U.K.: Electrochemical behavior of multicomponent amorphous and nanocrystalline Zr-based alloys in different environments. Corros. Sci. 48, 2212 (2006).Google Scholar
Kamachi Mudali, U., Baunack, S., Eckert, J., Schultz, L., and Gebert, A.: Pitting corrosion of bulk glass-forming zirconium-based alloys. J. Alloys Compd. 377, 290 (2004).Google Scholar
Scully, J.R., Gebert, A., and Payer, J.: Corrosion and related mechanical properties of bulk metallic glasses. J. Mater. Res. 22, 302 (2007).CrossRefGoogle Scholar
Huang, L., Yokoyama, Y., Wu, W., Liaw, P.K., Pang, S.J., Inoue, A., Zhang, T., and He, W.: Ni-free Zr-Cu-Al-Nb-Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications. J. Biomed. Mater. Res. B. Appl. Biomater. 100B, 1472 (2012).Google Scholar
Lu, H.B., Zhang, L.C., Gebert, A., and Schultz, L.: Pitting corrosion of Cu–Zr metallic glasses in hydrochloric acid solutions. J. Alloys Compd. 462, 60 (2008).Google Scholar
Gebert, A., Kamachi Mudali, U., Eckert, J., and Schultz, L.: In Materials Research Society Symposium Proceedings (Materials Research Society, Warrendale, PA, 2004), p. 369379.Google Scholar
Green, B.A., Steward, R.V., Kim, I., Choi, C.K., Liaw, P.K., Kihm, K.D., and Yokoyama, Y.: In situ observation of pitting corrosion of the Zr50Cu40Al10 bulk metallic glass. Intermetallics 17, 568 (2009).Google Scholar
Peter, W.H., Buchanan, R.A., Liu, C.T., Liaw, P.K., Morrison, M.L., Horton, J.A., Carmichael, C.A.J., and Wright, J.L.: Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 10, 1157 (2002).Google Scholar
Morrison, M.L., Buchanan, R.A., Peker, A., Peter, W.H., Horton, J.A., and Liaw, P.K.: Cyclic-anodic-polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallics 12, 1177 (2004).Google Scholar
Pang, S.J., Zhang, T., Kimura, H., Asami, K., and Inoue, A.: Corrosion behavior of Zr-(Nb-)Al-Ni-Cu glassy alloys. Mater. Trans. JIM 41, 1490 (2000).Google Scholar
Pang, S.J., Zhang, T., Asami, K., and Inoue, A.: Formation, corrosion behavior, and mechanical properties of bulk glassy Zr–Al–Co–Nb alloys. J. Mater. Res. 18, 1652 (2003).Google Scholar
Raju, V.R., Kühn, U., Wolff, U., Schneider, F., Eckert, J., Reiche, R., and Gebert, A.: Corrosion behaviour of Zr-based bulk glass-forming alloys containing Nb or Ti. Mater. Lett. 57, 173 (2002).Google Scholar
Li, Y.H., Zhang, W., Dong, C., Qiang, J.B., Fukuhara, M., Makino, A., and Inoue, A.: Effects of Ni addition on the glass-forming ability, mechanical properties and corrosion resistance of Zr–Cu–Al bulk metallic glasses. Mater. Sci. Eng., A 528, 8551 (2011).Google Scholar
Liu, Z., Huang, L., Wu, W., Luo, X., Shi, M., Liaw, P.K., He, W., and Zhang, T.: Novel low Cu content and Ni-free Zr-based bulk metallic glasses for biomedical applications. J. Non-Cryst. Solids 363, 1 (2013).Google Scholar
Gebert, A., Buchholz, K., Leonhard, A., Mummert, K., Eckert, J., and Schultz, L.: Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Mater. Sci. Eng., A 267, 294 (1999).Google Scholar
Baunack, S., Kamachi Mudali, U., and Gebert, A.: Characterization of oxide layers on amorphous Zr-based alloys by Auger electron spectroscopy with sputter depth profiling. Appl. Surf. Sci. 252, 162 (2005).Google Scholar
Green, B.A., Meyer, H.M., Benson, R.S., Yokoyama, Y., Liaw, P.K., and Liu, C.T.: A study of the corrosion behaviour of Zr50Cu(40−X)Al10PdX bulk metallic glasses with scanning Auger microanalysis. Corros. Sci. 50, 1825 (2008).Google Scholar
Hiromoto, S., Tsai, A.P., Sumita, M., and Hanawa, T.: Effect of chloride ion on the anodic polarization behavior of the Zr65Al7.5Ni10Cu17.5 amorphous alloy in phosphate buffered solution. Corros. Sci. 42, 1651 (2000).CrossRefGoogle Scholar
Homazava, N., Shkabko, A., Logvinovich, D., Krähenbühl, U., and Ulrich, A.: Element-specific in situ corrosion behavior of Zr–Cu–Ni–Al–Nb bulk metallic glass in acidic media studied using a novel microcapillary flow injection inductively coupled plasma mass spectrometry technique. Intermetallics 16, 1066 (2008).Google Scholar
Nie, X.P., Xu, X.M., Jiang, Q.K., Chen, L.Y., Xu, Y., Fang, Y.Z., Xie, G.Q., Luo, M.F., Wu, F.M., Wang, X.D., Cao, Q.P., and Jiang, J.Z.: Effect of microalloying of Nb on corrosion resistance and thermal stability of ZrCu-based bulk metallic glasses. J. Non-Cryst. Solids 355, 203 (2009).Google Scholar
Liu, L., Qiu, C.L., Sun, M., Chen, Q., Chan, K.C., and Pang, G.K.H.: Improvements in the plasticity and biocompatibility of Zr–Cu–Ni–Al bulk metallic glass by the microalloying of Nb. Mater. Sci. Eng., A 449451, 193 (2007).Google Scholar
Asami, K., Habazaki, H., Inoue, A., and Hashimoto, K.: Recent development of highly corrosion resistant bulk glassy alloys. Mater. Sci. Forum 502, 225 (2005).Google Scholar
Gebert, A., Gostin, P.F., Uhlemann, M., Eckert, J., and Schultz, L.: Interactions between mechanically generated defects and corrosion phenomena of Zr-based bulk metallic glasses. Acta Mater. 60, 2300 (2012).Google Scholar
Tanimoto, H., Soga, Y., Takayanagi, Y., and Mizubayashi, H.: Dissolved-oxygen-induced intensive pitting corrosion of amorphous ZrCu alloys in thin NaCl solutions. Mater. Trans. 52, 1402 (2011).Google Scholar
Gebert, A., Kuehn, U., Baunack, S., Mattern, N., and Schultz, L.: Pitting corrosion of zirconium-based bulk glass-matrix composites. Mater. Sci. Eng., A 415, 242 (2006).CrossRefGoogle Scholar
Schroeder, V., Gilbert, C.J., and Ritchie, R.O.: Comparison of the corrosion behaviour of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5, with its crystallized form. Scr. Mater. 38, 1481 (1998).Google Scholar
Long, Z., Wei, H., Ding, Y., Zhang, P., Xie, G., and Inoue, A.: A new criterion for predicting the glass-forming ability of bulk metallic glasses. J. Alloys Compd. 475, 207 (2009).Google Scholar
Kruzic, J.J.: Understanding the problem of fatigue in bulk metallic glasses. Metall. Mater. Trans. A 42, 1516 (2010).Google Scholar
Kawashima, A., Yokoyama, Y., and Inoue, A.: Zr-based bulk glassy alloy with improved resistance to stress corrosion cracking in sodium chloride solutions. Corros. Sci. 52, 2950 (2010).CrossRefGoogle Scholar
Schroeder, V., Gilbert, C.J., and Ritchie, R.O.: Effect of aqueous environment on fatigue-crack propagation behavior in a Zr-based bulk amorphous metal. Scr. Mater. 40, 1057 (1999).Google Scholar
Morrison, M.L., Buchanan, R., Liaw, P., Green, B.A., Wang, G., Liu, C., and Horton, J.A.: Corrosion–fatigue studies of the Zr-based Vitreloy 105 bulk metallic glass. Mater. Sci. Eng., A 467, 198 (2007).CrossRefGoogle Scholar
Gebert, A., Gostin, P.F., and Schultz, L.: Effect of surface finishing of a Zr-based bulk metallic glass on its corrosion behaviour. Corros. Sci. 52, 1711 (2010).Google Scholar
ASTM: Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution (ASTM International, West Conshohocken, PA 2000).Google Scholar
Frankel, G.S., Scully, J.R., and Jahnes, C.: Repassivation of pits in aluminum thin films. J. Electrochem. Soc. 143, 1834 (1996).CrossRefGoogle Scholar
Vishwanadh, B., Abraham, G.J., Neogy, J.S., Dutta, R.S., and Dey, G.K.: Effect of structural defects, surface irregularities, and quenched-in defects on corrosion of Zr-based metallic glasses. Metall. Mater. Trans. A 40A, 1131 (2009).Google Scholar
Kim, Y.H. and Frankel, G.S.: Effect of noble element alloying on passivity and passivity breakdown of Ni. J. Electrochem. Soc. 154, C36 (2007).Google Scholar
Frankel, G.S.: Pitting corrosion of metals. A review of the critical factors. J. Electrochem. Soc. 145, 2186 (1998).Google Scholar
Paillier, J., Mickel, C., Gostin, P.F., and Gebert, A.: Characterization of corrosion phenomena of Zr–Ti–Cu–Al–Ni metallic glass by SEM and TEM. Mater. Charact. 61, 1000 (2010).CrossRefGoogle Scholar
Bala, H. and Szymura, S.: Acid corrosion of amorphous and crystalline Cu-Zr alloys. Appl. Surf. Sci. 35, 41 (1988).Google Scholar
Kawashima, A., Ohmura, K., Yokoyama, Y., and Inoue, A.: The corrosion behaviour of Zr-based bulk metallic glasses in 0.5M NaCl solution. Corros. Sci. 53, 2778 (2011).Google Scholar
Green, B.A.: Localized corrosion behaviour of Zr-based bulk metallic glasses in neutral NaCl electrolytes. Doctoral Dissertation, The University of Tennessee, Knoxville, TN, 2008.Google Scholar
Köster, U. and Triwikantoro, : Oxidation of amorphous and nanocrystalline Zr-Cu-Ni-Al alloys. Mater. Sci. Forum 360362, 29 (2001).Google Scholar
Strehblow, H-H.: In Corrosion Mechanisms in Theory and Practice, Marcus, P. ed.; Marcel Dekker, Inc.: New York, Basel, 2002; pp. 243285.CrossRefGoogle Scholar
Laycock, N.J. and Newman, R.C.: Localised dissolution kinetics, salt films and pitting potentials. Corros. Sci. 39, 1771 (1997).Google Scholar
Sato, N.: The stability of localized corrosion. Corros. Sci. 37, 1947 (1995).Google Scholar
Tauseef, A., Tariq, N.H., Akhter, J.I., Hasan, B.A., and Mehmood, M.: Corrosion behavior of Zr–Cu–Ni–Al bulk metallic glasses in chloride medium. J. Alloys Compd. 489, 596 (2010).Google Scholar
Gebert, A., Gostin, F., Kühn, U., and Schultz, L.: Corrosion of a Zr-based bulk metallic glass with different surface finishing states. ECS Trans. 16, 1 (2009).Google Scholar
Thompson, W.T., Kaye, M.H., Bale, C.W., and Pelton, A.D.: In Uhlig’s Corrosion Handbook, Revie, R.W. ed. (John Wiley & Sons, Inc., New York, NY, 2000); pp. 125136.Google Scholar