Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:31:21.470Z Has data issue: false hasContentIssue false

Compressive strain-induced metal–insulator transition in orthorhombic SrIrO3 thin films

Published online by Cambridge University Press:  21 October 2014

John H. Gruenewald
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
John Nichols
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
Jasminka Terzic
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
Gang Cao
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
Joseph W. Brill
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
Sung S.Ambrose Seo*
Affiliation:
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
*
a)Address all correspondence to this author. e-mail: a.seo@uky.edu
Get access

Abstract

Orthorhombic SrIrO3 is a correlated metal whose electronic properties are highly susceptible to external perturbations due to the comparable interactions of spin–orbit interaction and electronic correlation. We have investigated the electronic properties of epitaxial orthorhombic SrIrO3 thin-films under compressive strain using transport measurements, optical absorption spectra, and magnetoresistance. The metastable, orthorhombic SrIrO3 thin-films are synthesized on various substrates using an epi-stabilization technique. We have observed that as in-plane lattice compression is increased, the dc-resistivity (ρ) of the thin films increases by a few orders of magnitude, and the dρ/dT changes from positive to negative values. However, optical absorption spectra show Drude-like, metallic responses without an optical gap opening for all compressively strained thin films. Transport measurements under magnetic fields show negative magnetoresistance at low temperature for compressively strained thin-films. Our results suggest that weak localization is responsible for the strain-induced metal–insulator transition for the orthorhombic SrIrO3 thin-films.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moon, S., Jin, H., Kim, K., Choi, W., Lee, Y., Yu, J., Cao, G., Sumi, A., Funakubo, H., Bernhard, C., and Noh, T.: Dimensionality-controlled insulator-metal transition and correlated metallic state in 5d transition metal oxides Srn+1IrnO3n+1 (n=1, 2, and ∞). Phys. Rev. Lett. 101(22), 226402 (2008).Google Scholar
Kim, B., Jin, H., Moon, S., Kim, J.Y., Park, B.G., Leem, C., Yu, J., Noh, T., Kim, C., Oh, S.J., Park, J.H., Durairaj, V., Cao, G., and Rotenberg, E.: Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101(7), 076402 (2008).CrossRefGoogle ScholarPubMed
Erickson, A.S., Misra, S., Miller, G.J., Gupta, R.R., Schlesinger, Z., Harrison, W.A., Kim, J.M., and Fisher, I.R.: Ferromagnetism in the Mott insulator Ba2NaOsO6. Phys. Rev. Lett. 99(1), 016404 (2007).Google Scholar
Carter, J-M., Shankar, V.V., Zeb, M.A., and Kee, H-Y.: Semimetal and topological insulator in perovskite iridates. Phys. Rev. B 85(11), 115105 (2012).Google Scholar
Watanabe, H., Shirakawa, T., and Yunoki, S.: Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides. Phys. Rev. Lett. 105(21), 216410 (2010).Google Scholar
Shitade, A., Katsura, H., Kunes, J., Qi, X.L., Zhang, S.C., and Nagaosa, N.: Quantum spin Hall effect in a transition metal oxide Na2IrO3. Phys. Rev. Lett. 102(25), 256403 (2009).Google Scholar
Wan, X., Turner, A.M., Vishwanath, A., and Savrasov, S.Y.: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83(20), 205101 (2011).Google Scholar
Rayan Serrao, C., Liu, J., Heron, J.T., Singh-Bhalla, G., Yadav, A., Suresha, S.J., Paull, R.J., Yi, D., Chu, J.H., Trassin, M., Vishwanath, A., Arenholz, E., Frontera, C., Železný, J., Jungwirth, T., Marti, X., and Ramesh, R.: Epitaxy-distorted spin-orbit Mott insulator in Sr2IrO4 thin films. Phys. Rev. B 87(8), 085121 (2013).Google Scholar
Nichols, J., Terzic, J., Bittle, E.G., Korneta, O.B., De Long, L.E., Brill, J.W., Cao, G., and Seo, S.S.A.: Tuning electronic structure via epitaxial strain in Sr2IrO4 thin films. Appl. Phys. Lett. 102(14), 141908 (2013).CrossRefGoogle Scholar
Mott, N.: Conductivity, localization, and the mobility edge. In The Physics of Hydrogenated Amorphous Silicon II, Joannopoulos, J. and Lucovsky, G. ed.; (Springer Berlin, Heidelberg, 1984); p. 169.Google Scholar
Longo, J.M., Kafalas, J.A., and Arnott, R.J.: Structure and properties of the high and low pressure forms of SrIrO3. J. Solid State Chem. 3(2), 174 (1971).Google Scholar
Zhao, J.G., Yang, L.X., Yu, Y., Li, F.Y., Yu, R.C., Fang, Z., Chen, L.C., and Jin, C.Q.: High-pressure synthesis of orthorhombic SrIrO3 perovskite and its positive magnetoresistance. J. Appl. Phys. 103(10), 103706 (2008).Google Scholar
Yong Kwan, K., Akihiro, S., Kenji, T., Shintaro, Y., Shinichi, I., Takayuki, W., Kensuke, A., Satoru, K., Keisuke, S., and Hiroshi, F.: Metalorganic chemical vapor deposition of epitaxial perovskite SrIrO3 films on (100)SrTiO3 substrates. Jpn. J. Appl. Phys. 45(1L), L36 (2006).Google Scholar
Jang, S.Y., Moon, S.J., Jeon, B.C., and Chung, J.S.: PLD growth of epitaxially-stabilized 5d perovskite SrIrO3 thin films. J. Korean Phys. Soc. 56(6), 1814 (2010).Google Scholar
Biswas, A., Kim, K-S., and Jeong, Y.H.: Metal insulator transitions in perovskite SrIrO3 thin films: Role of disorder and correlation. ArXiv 1312, 2716 (2013).Google Scholar
Jang, S.Y., Kim, H., Moon, S.J., Choi, W.S., Jeon, B.C., Yu, J., and Noh, T.W.: The electronic structure of epitaxially stabilized 5d perovskite Ca1-xSrxIrO3 (x = 0, 0.5, and 1) thin films: The role of strong spin-orbit coupling. J. Phys.: Condens. Matter 22(48), 485602 (2010).Google Scholar
Liu, J., Chu, J-H., Rayan Serrao, C., Yi, D., Koralek, J., Nelson, C., Frontera, C., Kriegner, D., Horak, L., Arenholz, E., Orenstein, J., Vishwanath, A., Marti, X., and Ramesh, R.: Tuning the electronic properties of Jeff = 1/2 correlated semimetal in epitaxial perovskite SrIrO3. ArXiv 1305, 1732 (2013).Google Scholar
Gayathri, N., Raychaudhuri, A.K., Xu, X.Q., Peng, J.L., and Greene, R.L.: Electronic conduction in LaNiO3-δ: The dependence on the oxygen stoichiometry. J. Phys.: Condens. Matter 10(6), 1323 (1998).Google Scholar
Wu, F.X., Zhou, J., Zhang, L.Y., Chen, Y.B., Zhang, S.T., Gu, Z.B., Yao, S.H., and Chen, Y.F.: Metal-insulator transition in SrIrO3 with strong spin-orbit interaction. J. Phys.: Condens. Matter 25(12), 125604 (2013).Google Scholar
Bergmann, G.: Weak localization in thin films: A time-of-flight experiment with conduction electrons. Phys. Rep. 107(1), 1 (1984).Google Scholar