Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-30T23:34:21.020Z Has data issue: false hasContentIssue false

Critical currents after thermal neutron irradiation of uranium doped superconductors

Published online by Cambridge University Press:  31 January 2011

F. E. Luborsky
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
R. H. Arendt
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
R. L. Fleischer
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
H. R. Hart Jr.
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
K. W. Lay
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
J. E. Tkaczyk
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
D. Orsini
Affiliation:
General Electric Research and Development Center, Schenectady, New York 12301
Get access

Abstract

Fission fragment damage was introduced into aligned sintered samples of various superconductors containing small additions of UO2 by irradiation with thermal neutrons. Samples of aligned, sintered YBa2Cu3Ox, powdered Bi2Sr2Ca1Cu2Oy, powdered Bi1.7Pb0.3Sr2Ca2Cu3Oz, and epitaxial films of YBa2Cu3Ox on (100)SrTiO3 were used. Magnetic hysteresis, with the critical state model, was used to evaluate changes in the intragranular critical current. In the case of the Bi1.7Pb0.3Sr2Ca2Cu3Oz powders an increase in intragranular Jc at 0.8 T of greater than 70 times was produced by the radiation. The epitaxial film showed no change in Jc on irradiation. This behavior upon irradiation is attributed to the pinning caused by damage produced by the fission products of uranium.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Fleischer, R. L., Hart, H. R., Jr., Lay, K. W., and Luborsky, F. E., Phys. Rev. B40, 2163 (1989).CrossRefGoogle Scholar
2Chrisey, D. B. and Summers, G. P., Nucl. Instrum. Methods Phys. Rev. B43, 50 (1989).CrossRefGoogle Scholar
3Roas, B., Hensel, B., Saemann-Ischenko, G., and Schultz, L., Appl. Phys. Lett. 54, 1051 (1989).CrossRefGoogle Scholar
4Shiraishi, K., Itoh, H., and Yoda, O., Jpn. J. Appl. Phys. 28, L409 (1989).CrossRefGoogle Scholar
5Masegi, T., Terai, T., Takahaski, Y., Enomoto, Y., and Kubo, S., Jpn. J. Appl. Phys. 28, L1521 (1989).CrossRefGoogle Scholar
6Takamura, S., Aruga, T., and Hoshiya, T., Jpn. J. Appl. Phys. 28, L1118 (1989).CrossRefGoogle Scholar
7Takamura, S., Hoshiya, T., Aruga, T., and Kobiyama, M., Jpn. J. Appl. Phys. 28, L1395 (1989).CrossRefGoogle Scholar
8Aruga, T., Takamura, S., Hoshiya, T., and Kobiyama, M., Jpn. J. Appl. Phys. 28, L964 (1989).CrossRefGoogle Scholar
9Hoshiya, T., Takamura, S., Aruga, T., and Kobiyama, M., Jpn. J. Appl. Phys. 28 L1352 (1989).CrossRefGoogle Scholar
10Shiraishi, K., Kato, T., and Kuniya, J., Jpn. J. Appl. Phys. 28, L807 (1989).CrossRefGoogle Scholar
11Kato, T., Shiraishi, K., and Kuniya, J., Jpn. J. Appl. Phys. 28, L766 (1989).CrossRefGoogle Scholar
12van Dover, R. B., Gyorgy, E. M., Schneemeyer, L. F., Mitchell, J. W., Rao, K. R., Puzniak, R., and Waszczak, J. V., Nature 342, 55 (1989).CrossRefGoogle Scholar
13Jin, J., Chen, W., Jin, X., Zhang, Y., Lu, M., Sheng, Y., Ji, J., Han, G., Tang, Y., and Yao, X., Phys. Status Solidi A114, K189 (1989).CrossRefGoogle Scholar
14Herr, Y-H., Lee, K-H., Kim, C-J., Lee, H-G., Kim, C-T., Hong, G-W., and Won, D-Y., Jpn. J. Appl. Phys. 28, L1561 (1989).CrossRefGoogle Scholar
15Okada, M. and Kawakubo, T., Radiat. Eff. and Defects in Solids 108, 137 (1989).CrossRefGoogle Scholar
16Waliszewski, J., Andersen, N. H., Dobrzynski, L., Ihringer, J., Lebech, B., Prandl, W., and Wisniewski, A., Physica C160,189 (1989).CrossRefGoogle Scholar
17Umezawa, A., Crabtree, G. W., Liu, J. Z., Weber, H. W., Kwok, W. K., Nunex, L. H., Moran, T. J., Sowers, C. H., and Claus, H., Phys. Rev. B 36, 7151 (1987).CrossRefGoogle Scholar
18Garbauskas, M. F., Arendt, R. H., and Kasper, J. S., Inorganic Chem. 26, 3191 (1987).CrossRefGoogle Scholar
19Arendt, R. H., Garbauskas, M. F., and Schilling, L. L., J. Mater. Res. 5, 33 (1990).CrossRefGoogle Scholar
20Ishida, T. and Sakuma, T., Jpn. J. Appl. Phys. 27, L1237 (1988).CrossRefGoogle Scholar
21Kwasnick, R. F., Luborsky, F. E., Hall, E. L., Garbauskas, M. F., Borst, K., and Curran, M. J., J. Mater. Res. 4, 257 (1989).CrossRefGoogle Scholar
22Fleischer, R. L., Price, P. B., and Walker, R. M., Nucl. Sci. Eng. 22, 153 (1965).CrossRefGoogle Scholar
23Luborsky, F. E., Kwasnick, R. F., Borst, K., Garbauskas, M. F., Hall, E. L., and Curran, M. J., J. Appl. Phys. 64, 6388 (1988).CrossRefGoogle Scholar
24Schawlow, A. L. and Devlin, G. E., Phys. Rev. 113, 120 (1959).CrossRefGoogle Scholar
25Bean, C. P., Phys. Rev. Lett. 8, 250 (1962); Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
26Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F., and Waszczak, J. V., Appl. Phys. Lett. 55, 283 (1989).CrossRefGoogle Scholar
27Roas, B., Schultz, L., and Saemann-Ischenko, G., Phys. Rev. Lett. 64, 479 (1990).CrossRefGoogle Scholar