Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T12:58:58.888Z Has data issue: false hasContentIssue false

Deformation of cube-textured aluminum studied using laser-induced photoelectron emission

Published online by Cambridge University Press:  31 January 2011

M. Cai*
Affiliation:
Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814
S.C. Langford
Affiliation:
Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814
J.T. Dickinson
Affiliation:
Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814
L.E. Levine
Affiliation:
Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8553
*
a)Address all correspondence to this author. Present address: Department of Engineering Technology, University of Houston, Houston, Texas 77204. e-mail: mcai@uh.edu.
Get access

Abstract

The evolution of the kinetic energy distribution of photoelectrons from a cube-oriented aluminum sample during tensile deformation was probed with a retarding field energy analyzer. Because of the anisotropy of the aluminum work function, the electron-energy distribution is altered as the area fractions of the major surface planes change during deformation. In cube-textured aluminum, deformation reduces the {100} area fraction and the relatively low energy electrons from these surfaces. Conversely, the {110} and {111} area fractions and the relatively high energy electrons from these surfaces both increase. These changes are quantitatively consistent with texture analysis by electron backscattered diffraction (EBSD). They reflect deformation-induced production of {111} surfaces by slip and the exposure of {110} surfaces by grain rotation. Photoelectron kinetic energy measurements supplement EBSD measurements and are readily acquired in real-time.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Verhoeven, J.D.: Fundamentals of Physical Metallurgy Wiley New York 1975 60–94Google Scholar
2Humphreys, F.J.Hatherly, M.: Recrystallization and Related Annealing Phenomena Pergamon Press Oxford, UK 1995 19–20Google Scholar
3Boas, W.Ogilvie, G.J.: The plastic deformation of a crystal in a polycrystalline aggregate. Acta Metall. 2, 655 1954CrossRefGoogle Scholar
4Kocks, U.F.: Polyslip in polycrystals. Acta Metall. 6, 85 1958CrossRefGoogle Scholar
5Hosford, W.F., Fleischer, R.L.Backofen, W.A.: Tensile deformation of aluminum single crystals at low temperatures. Acta Metall. 8, 187 1960CrossRefGoogle Scholar
6Hazif, R.L., Dorizzi, P.Poirier, J.P.: Slip on the {110}〈110〉 system in face-centered cubic metals. Acta Metall. 21, 903 1973Google Scholar
7Hazif, R.L.Poirer, J.P.: Cross-slip on {110} planes in aluminum single crystals compressed along 〈100〉 axis. Acta Metall. 23, 865 1975CrossRefGoogle Scholar
8Carrard, M.Martin, J.L.: A study of (100) glide in [112] aluminum single crystals. Philos. Mag. A 56, 391 1987CrossRefGoogle Scholar
9Maurice, C.Driver, J.H.: High temperature plane strain compression of cube oriented aluminum crystals. Acta Metall. Mater. 41, 1653 1993CrossRefGoogle Scholar
10Morii, K., Mecking, H.Nakayama, Y.: Development of shear bands in fcc single crystals. Acta Mater. 33, 379 1985CrossRefGoogle Scholar
11Godfrey, A., Jensen, D.J.Hansen, N.: Slip pattern, microstructure and local crystallography in an aluminum single crystal of brass orientation {110}〈112〉. Acta Mater. 46, 823 1998CrossRefGoogle Scholar
12Hansen, N.Huang, X.: Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 46, 1827 1998CrossRefGoogle Scholar
13Han, J.H., Kim, D.I., Jee, K.K.Oh, K.H.: Evolution of crystallographic orientations in an aluminum single crystal during tensile deformation. Mater. Sci. Eng., A 387–389, 60 2004CrossRefGoogle Scholar
14Hansen, N.Huang, X.: Dislocation structures and flow stress. Mater. Sci. Eng., A 234–236, 602 1997CrossRefGoogle Scholar
15Gracio, J.J., Lopes, A.B.Rauch, E.F.: Analysis of plastic instability in commercially pure Al alloys. J. Mater. Process. Technol. 103, 160 2000CrossRefGoogle Scholar
16Hansen, N., Huang, X.Hughes, D.A.: Microstructural evolution and hardening parameters. Mater. Sci. Eng., A 317, 3 2001CrossRefGoogle Scholar
17Han, J.H., Jee, K.K.Oh, K.H.: Orientation rotation behavior during in situ tensile deformation of polycrystalline 1050 aluminum alloy. Int. J. Mech. Sci. 45, 1613 2003CrossRefGoogle Scholar
18Okada, T., Huang, X., Kashihara, K., Inoko, F.Wert, J.A.: Crystal orientations before and after annealing in an Al single crystal strained in tension. Acta Mater. 51, 1827 2003CrossRefGoogle Scholar
19Sandlin, M.S., Bowman, K.J.Root, J.: Texture development in SiC-seeded AlN. Acta Mater. 45, 383 1997CrossRefGoogle Scholar
20Schäfer, W.: Neutron diffraction applied to geological texture and stress analysis. Eur. J. Mineral. 14, 263 2002CrossRefGoogle Scholar
21Humphreys, F.J.: Quantitative metallography by high resolution electron backscattered diffraction in Quantitative Microscopy of High Temperature Materials,edited by A. Strang and J. Cawley (Woodhead Publishing, Cambridge, UK, 2001 103Google Scholar
22Humphreys, F.J., Bate, P.S.Hurley, P.J.: Orientation averaging of electron backscattered diffraction data. J. Microsc. 201, 50 2001CrossRefGoogle ScholarPubMed
23Humphreys, F.J., Huang, Y., Brough, I.Harris, C.: Electron backscattered diffraction of grain and subgrain structures—Resolution considerations. J. Microsc. 195, 212 1999CrossRefGoogle ScholarPubMed
24Field, D.P.: Improving the spatial resolution of EBSD. Microsc. Microanal. 11, 52 2005CrossRefGoogle Scholar
25Field, D.P., Trivedi, P., Wright, S.I.Kumar, M.: Analysis of local orientation gradients in deformed single crystals. Ultramicroscopy 103, 33 2005CrossRefGoogle ScholarPubMed
26Feldmann, D.Welge, K.H.: Two- and three-photon resonant ionization of strontium: Energy and angular distribution of the electrons. J. Phys. B 15, 1651 1982CrossRefGoogle Scholar
27Montaut, C.G.Montaut, J.P.G.: Space-charge effect on the energy spectrum of photoelectrons produced by high-intensity short-duration laser pulses on a metal. Phys. Rev. A 44, 1409 1991CrossRefGoogle Scholar
28Paolicell, G., Fondacaro, A., Ruocco, A., Attili, A., Stefani, G., Ferrini, G., Peloi, M., Parmigiani, F., Banfi, G., Cautero, G., Tommasini, R., Comeelli, G.Rosei, R.: A novel apparatus for laser-excited time-resolved photoemission spectroscopy. Surf. Rev. Lett. 9, 541 2002CrossRefGoogle Scholar
29Eastment, R.M.Mee, C.H.: Work function measurements on (100), (110) and (111) surfaces of aluminum. J. Phys. F 3, 1738 1973CrossRefGoogle Scholar
30Grepstad, J.K., Gartland, P.O.Slagsvold, B.J.: Anisotropic work function of clean and smooth low index faces of aluminum. Surf. Sci. 57, 348 1976CrossRefGoogle Scholar
31Michaelson, H.B.: Electron work functions of the elements in Handbook of Chemistry and Physics, edited by D.R. Lide CRC Press Boca Raton, FL 1991 12.84Google Scholar
32Li, D.Y.Li, W.: Electron work function: A parameter sensitive to the adhesion behavior of crystallographic surfaces. Appl. Phys. Lett. 79, 4337 2001CrossRefGoogle Scholar
33Li, W.Li, D.Y.: A simple method for determination of the electron work function of different crystallographic faces of copper. Phys. Status Solidi A 196, 390 2003CrossRefGoogle Scholar
34Baxter, W.J.Rouze, S.R.: Photostimulated exoelectron emission from slip lines: A new microscopy of metal deformation. J. Appl. Phys. 44, 4400 1973CrossRefGoogle Scholar
35Cai, M., Langford, S.C., Levine, L.E.Dickinson, J.T.: Determination of strain localization in aluminum alloys using laser-induced photoelectron emission. J. Appl. Phys. 96, 7189 2004CrossRefGoogle Scholar
36Cai, M., Ricker, R.E., Langford, S.C., Levine, L.E.Dickinson, J.T. The effect of thermal oxidation on laser-induced photoelectron emission during tensile deformation of polycrystalline aluminum. (unpublished)Google Scholar
37Dickinson, J.T.: Fracto-emission in Non-Destructive Testing of Fibre-Reinforced Plastic Composites,edited by J. Summerscales (Elsevier Applied Science, London, UK, 1990 429–482Google Scholar
38Levitin, V.V., Garin, O.L., Yatsenko, V.K.Loskutov, S.V.: On structural sensibility of work function. Vacuum 63, 367 2001CrossRefGoogle Scholar
39Zhai, T., Martin, J.W., Briggs, G.A.D.Wilkinson, A.J.: Fatigue damage at room temperature in aluminum single crystals III. Lattice rotation. Acta Mater. 44, 3477 1996CrossRefGoogle Scholar
40Cai, M., Levine, L.E., Langford, S.C.Dickinson, J.T.: “Observation” of dislocation motion in single crystal and polycrystalline aluminum during uniaxial deformation using photoemission technique. Mater. Sci. Eng., A 400–401, 476 2005CrossRefGoogle Scholar
41Margulies, L., Winther, G.Poulsen, H.F.: In situ measurement of grain rotation during deformation of polycrystals. Science 291, 2392 2001CrossRefGoogle ScholarPubMed
42Cai, M., Stoudt, M.R., Levine, L.E.Dickinson, J.T.: A combined study of surface roughness in polycrystalline aluminum during uniaxial deformation using laser-induced photoemission and confocal microscopy. Philos. Mag. A 87, 907 2007CrossRefGoogle Scholar
43Bacroix, B.Jonas, J.J.: The influence of non-octahedral slip on texture development in FCC metals. Text. Microstruct. 8–9, 267 1988CrossRefGoogle Scholar
44Maurice, C., Driver, J.H.Toth, L.S.: Modeling high temperature rolling textures of FCC metals. Text. Microstruct. 19, 211 1992CrossRefGoogle Scholar
45Taylor, G.I.: Plastic strain in metals. J. Inst. Metal. 62, 307 1938Google Scholar