Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T22:22:34.597Z Has data issue: false hasContentIssue false

Dependence of dielectric and piezoelectric properties on film thickness for highly {100}-oriented lead magnesium niobate–lead titanate (70/30) thin films

Published online by Cambridge University Press:  31 January 2011

Jeong Hwan Park
Affiliation:
Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
Susan Trolier-McKinstry
Affiliation:
Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Fiber textured {100}-oriented lead magnesium niobate–lead titanate (PMN–PT) (70/30) films with thicknesses between 0.35 and 2.1 mm were prepared using chemical solution processing. The degree of preferred orientation changed little with increasing thickness. However, the measured dielectric constant, remanent polarization, and piezoelectric coefficients (d31) increased with increasing film thickness. The effective d31 coefficients of highly {100}-oriented PMN–PT films on Pt-coated Si substrates were found to range from −16 to −96 pC/N. Ultraviolet illumination during poling resulted in abnormal aging behaviors and lower overall aging rates for the films. The initial nonlinear aging behavior was attributed to the presence of an internal space-charge field that developed from photoinduced charge carriers. As the space-charge field decays over time, the magnitude of d31 increased until 450–500 min after poling, at which time d31 remained either constant or declined slightly. Thus, the changes in d31 were limited to 1–2%/decade 500–600 min after poling.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Swartz, S.L., Shrout, T.R., Schultz, W.A., and Cross, L.E., J. Am. Ceram. Soc. 67, 311 (1984).CrossRefGoogle Scholar
2.Cross, L.E., Jang, S.J., Newnham, R.E., Nomura, S., and Uchino, K., Ferroelectrics 23, 187 (1980).CrossRefGoogle Scholar
3.Lu, Y., Jin, G-H., Golomb, M.C., Liu, S-W., Jiang, H., Wang, F-L., Zhao, J., Wang, S-Q., and Drehman, A.J., Appl. Phys. Lett. 72, 2927 (1998).CrossRefGoogle Scholar
4.Smolenskii, G.A. and Agranovskaya, A.I., Sov. Phys. Tech. Phys. 3, 1380 (1958).Google Scholar
5.Choi, S.W., Shrout, T.R., Jang, S.J., and Bhalla, A., Ferroelectrics 100, 29 (1989).CrossRefGoogle Scholar
6.Jiang, M.C. and Wu, T.B., J. Mater. Res. 9, 1879 (1994).CrossRefGoogle Scholar
7.Takeshima, F., Shiratsuyu, K., Takagi, H., and Tomono, K., Jpn. J. Appl. Phys. 34, 5083 (1995).CrossRefGoogle Scholar
8.Tantigate, C., Lee, J., and Safari, A., Appl. Phys. Lett. 66, 1611 (1995).CrossRefGoogle Scholar
9.Futakuchi, T., and Tanio, K., Jpn. J. Appl. Phys. 34, 5207 (1995).CrossRefGoogle Scholar
10.Yoon, K.H., Park, J.H., and Kang, D.H., J. Am. Ceram. Soc. 78, 2267 (1995).CrossRefGoogle Scholar
11.Francis, L.F. and Payne, D.A., J. Am. Ceram. Soc. 74, 3000 (1991).CrossRefGoogle Scholar
12.Nagakari, S., Kamigaki, K., and Nambu, S., Jpn. J. Appl. Phys. 35, 4933 (1996).CrossRefGoogle Scholar
13.Udayakumar, K.R., Chen, J., Schuele, P.J., Cross, L.E., Kumar, V., and Krupanidhi, S.B., Appl. Phys. Lett. 60, 1187 (1992).CrossRefGoogle Scholar
14.Brooks, K.G., Klissurska, R.D., Moeckli, P., and Setter, N., J. Mater. Res. 12, 531 (1997).CrossRefGoogle Scholar
15.Du, X-H., Zheng, J., Belegunda, U., and Uchino, K., Appl. Phys. Lett. 72, 2421 (1998).CrossRefGoogle Scholar
16.Aoki, K., Fukuda, Y., Numata, K., and Nishimura, A., Jpn. J. Appl. Phys. 33, 5155 (1994).CrossRefGoogle Scholar
17.Park, J.H., Kang, D.H., and Yoon, K.H., J. Am. Ceram. Soc. 82, 2116 (1999).CrossRefGoogle Scholar
18.Shyu, M-J., Hong, T-J., and Wu, T-B., Mater. Lett. 23, 221 (1995).CrossRefGoogle Scholar
19.Jang, H.M. and Cho, M.K., J. Am. Ceram. Soc. 79, 1435 (1996).CrossRefGoogle Scholar
20.Sakashita, Y., Segawa, H., Tominaga, K., and Okada, M., J. Appl. Phys. 73, 7857 (1993).CrossRefGoogle Scholar
21.Maria, J-P. Ph.D. Thesis, Pennsylvania State University, University Park, PA, 1998.Google Scholar
22.Maria, J-P., Hackenberger, W., and Trolier-McKinstry, S., J. Appl. Phys. 84, 5147 (1999).CrossRefGoogle Scholar
23.Budd, K.D., Dey, S.K., and Payne, D.A., Br. Ceram. Proc. 36, 107 (1985).Google Scholar
24.Park, J.H., Xu, F., and Trolier-McKinstry, S., J. Appl. Phys. (2000).Google Scholar
25.Shephard, J.F. Jr.,, Xu, F., Kanno, I., and Trolier-McKinstry, S., J. Appl. Phys. 85, 6711 (1999).CrossRefGoogle Scholar
26.Lakeman, C.D.E. and Payne, D.A., J. Am. Ceram. Soc. 75, 3091 (1992).CrossRefGoogle Scholar
27.Nagarajan, V., Jenkins, I.G., Alpay, S.P., Li, H., Aggarwal, S., Salamanca-Riba, L., Roytburd, A.L., and Ramesh, R., J. Appl. Phys. 86, 595 (1999).CrossRefGoogle Scholar
28.Shrout, T., Chang, Z.P., Kim, N., and Markgraf, S., Ferroelectr. Lett. 12, 63 (1990).CrossRefGoogle Scholar
29.Kholkin, A.L., Colla, E.L., Tagantsev, A.K., Taylor, D.V., and Setter, N., Appl. Phys. Lett. 68, 2577 (1996).CrossRefGoogle Scholar
30.Du, X. and Chen, I-W., J. Appl. Phys. 83, 7789 (1998).CrossRefGoogle Scholar
31.Dimos, D., Warren, W.L., Sinclair, M.B., Tuttle, B.A., and Schwartz, R.W., J. Appl. Phys. 76, 4305 (1994).CrossRefGoogle Scholar
32.Kholkin, A.L. and Setter, N., Appl. Phys. Lett. 71, 2854 (1997).CrossRefGoogle Scholar
33.Polcawich, R.G., thesis, M.S., Pennsylvania State University, University Park, PA, 1999.Google Scholar
34.Polcawich, R.G., Moses, P.J., and Trolier-McKinstry, S., J. Mat. Res. (2000).Google Scholar