Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T04:24:15.976Z Has data issue: false hasContentIssue false

Dielectric Properties of Nanocomposites of Silver in a Glass-ceramic Containing the Lithium Niobate Phase

Published online by Cambridge University Press:  31 January 2011

A. Dan
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
D. Chakravorty
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India
Get access

Abstract

Glass-ceramics containing the LiNbO3 phase were used to grow nanometer-sized silver metal particles with median diameters in the range 10.5–17.3 nm. These nanocomposites showed large values of dielectric constant of the order of 103–104. Bergman's space charge model of a two-component composite gave results that differed from the experimental data. The polarization mechanism was concluded to be electronic in origin. An interrupted metallic strand model developed earlier by Rice and Bernasconi was used to explain the results obtained in the present specimen system.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Clusters and Cluster-Assembled Materials, edited by Averback, R.S., Bernholc, J., and Nelson, D.L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991).Google Scholar
2.Heath, J.R., Science 270, 1315 (1995).CrossRefGoogle Scholar
3.Hendler, J.H. and Meldrum, F.C., Adv. Mater. 7, 607 (1995).CrossRefGoogle Scholar
4.Alivisatos, A.P., Science 271, 933 (1996).CrossRefGoogle Scholar
5.Bethell, D. and Schiffrin, D.J., Nature 382, 581 (1996).CrossRefGoogle Scholar
6.Wang, Y. and Herron, N., J. Phys. Chem. 95, 525 (1991).CrossRefGoogle Scholar
7.Alivisatos, A.P., J. Phys. Chem. 100, 13226 (1996).CrossRefGoogle Scholar
8.Whetten, R.L., Cox, D.M., Trevor, D.J., and Kaldor, A., Phys. Rev. Lett. 54, 1494 (1985).CrossRefGoogle Scholar
9.Cox, A.J., Louderback, J.G., Apsel, S.E., and Bloomfield, L.A., Phys. Rev. B 49, 122965 (1994).CrossRefGoogle Scholar
10.Xiao, J.Q., Jiang, J.S., and Chien, C.L., Phys. Rev. Lett. 68, 3749 (1992).CrossRefGoogle Scholar
11.Wecker, J., Schnitzke, K., Oerva, H., and Grogger, W., Appl. Phys. Lett. 67, 563 (1995).CrossRefGoogle Scholar
12.Kubo, R., J. Phys. Soc. Jpn. 17, 975 (1962).CrossRefGoogle Scholar
13.Gorkov, L.P. and Eliashberg, G.M., Zh. Eksp. Teor. Fiz. 48, 1407 (1965) [Sov. Phys. JETP 21, 940 (1965)].Google Scholar
14.Dupree, R. and Smithard, M.A., J. Phys. Soc., Proc. Phys. Soc. London 5, 408 (1972).Google Scholar
15.Meier, F. and Wyder, P., Phys. Lett. 39A, 51 (1972).CrossRefGoogle Scholar
16.Rice, M.J. and Bernasconi, J., Phys. Rev. Lett. 29, 113 (1972).CrossRefGoogle Scholar
17.Roy, B. and Chakravorty, D., J. Phys: Condens. Matter 2, 9323 (1990).Google Scholar
18.Roy, B. and Chakravorty, D., J. Appl. Phys. 74, 4190 (1993).CrossRefGoogle Scholar
19.Nassau, K. and Levinstein, H.J., Phys. Rev. Lett. 7, 69 (1965).Google Scholar
20.Turner, E.H., Appl. Phys. Lett. 8, 303 (1966).CrossRefGoogle Scholar
21.Glass, A.M., Lines, M.E., Nassau, K., and Shiever, J.W., Appl. Phys. Lett. 31, 249 (1977).CrossRefGoogle Scholar
22.Takshige, M., Mitsui, T., Nakamma, T., Aikawa, Y., and Jang, M., Jpn. J. Appl. Phys., Part 2 20, L159 (1981).CrossRefGoogle Scholar
23.Tick, P.A. and Fehlner, F.P., J. Appl. Phys. 43, 362 (1972).CrossRefGoogle Scholar
24.Bergman, D.J., Phys. Rev. C43, 377 (1978).Google Scholar
25.Bergman, D.J., Ann. Phys. (N.Y.) 138, 78 (1982).CrossRefGoogle Scholar
26.Stroud, D., Milton, G.W., and De, B.R., Phys. Rev. B 34, 5145 (1986).CrossRefGoogle Scholar