Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T10:24:22.841Z Has data issue: false hasContentIssue false

Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel

Published online by Cambridge University Press:  04 June 2019

Rathinavelu Sokkalingam
Affiliation:
Advanced Materials Processing Laboratory, Department of Metallurgical aqnd Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
Veerappan Muthupandi
Affiliation:
Advanced Materials Processing Laboratory, Department of Metallurgical aqnd Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
Katakam Sivaprasad*
Affiliation:
Advanced Materials Processing Laboratory, Department of Metallurgical aqnd Materials Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
Konda Gokuldoss Prashanth*
Affiliation:
Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn 19086, Estonia; and Austrian Academy of Science, Erich Schmid Institute of Materials Science, A-8700 Leoben, Austria
*
a)Address all correspondence to these authors. e-mail: ksp@nitt.edu
Get access

Abstract

High-entropy alloys (HEAs) have been proven to exhibit superior structural properties from cryogenic to high temperatures, demonstrating their structural stability against the formation of complex intermetallic phases or compounds as major fractions. These characteristics can find applications in nuclear and aerospace sectors as structural materials. As the dissimilar joint design is necessary for such applications, an attempt is made to fabricate the dissimilar transition joint between Al0.1CoCrFeNi-HEA and AISI304 austenitic stainless steel by conventional tungsten inert gas welding. Microstructural characterization by SEM and EBSD clearly revealed the evolution of columnar dendritic structures from the interfaces and their transformation to equiaxed dendritic grains as they reach the weld center. Also, considerable grain coarsening was observed in the heat-affected zone of the HEA. The tensile test results depict that the dissimilar weld joint showed significantly higher tensile strength (590 MPa) than the HEA (327 MPa), making it suitable for structural applications.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yvon, P. and Carre, F.: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217 (2009).10.1016/j.jnucmat.2008.11.026CrossRefGoogle Scholar
Murty, K.L. and Charit, I.: Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. J. Nucl. Mater. 383, 189 (2008).CrossRefGoogle Scholar
Zinkle, S.J. and Ghoniem, N.M.: Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51, 55 (2000).10.1016/S0920-3796(00)00320-3CrossRefGoogle Scholar
Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications, 1st ed. (Springer International Publishing, Switzerland, 2016); pp. 1, 50.10.1007/978-3-319-27013-5CrossRefGoogle Scholar
Guo, W.: Molecular dynamics simulation of irradiation damage in multicomponent alloys. Ph.D. thesis, University of Tennessee, Knoxville, Tennessee, 2015; pp. 1, 20.Google Scholar
Kiran Kumar, N.A.P., Li, C., Leonard, K.J., Bei, H., and Zinkle, S.J.: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230 (2016).10.1016/j.actamat.2016.05.007CrossRefGoogle Scholar
Egami, T., Ojha, M., Khorgolkhuu, O., Nicholson, D.M., and Stocks, G.M.: Local electronic effects and irradiation resistance in high-entropy alloys. JOM 67, 2345 (2015).10.1007/s11837-015-1579-1CrossRefGoogle Scholar
Owen, L.R. and Jones, N.G.: Lattice distortions in high-entropy alloys. J. Mater. Res. 33, 2954 (2018).CrossRefGoogle Scholar
Sokkalingam, R., Mishra, S., Cheethirala, S.R., Muthupandi, V., and Sivaprasad, K.: Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 48, 3630 (2017).10.1007/s11661-017-4140-8CrossRefGoogle Scholar
Xia, S.Q., Yang, X., Yang, T.F., Liu, S., and Zhang, Y.: Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67, 2340 (2015).10.1007/s11837-015-1568-4CrossRefGoogle Scholar
Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Fang, Y., Zhang, Y., Xue, J., Yan, S., and Wang, Y.: Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation. Sci. Rep. 6, 32146 (2016).10.1038/srep32146CrossRefGoogle ScholarPubMed
Chen, M., Shi, X.H., Yang, H., Liaw, P.K., Gao, M.C., Hawk, J.A., and Qiao, J.: Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. J. Mater. Res. 33, 3310 (2018).10.1557/jmr.2018.279CrossRefGoogle Scholar
Lyu, Z., Fan, X., Lee, C., Wang, S-Y., Feng, R., and Liaw, P.K.: Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review. J. Mater. Res. 33, 2998 (2018).10.1557/jmr.2018.273CrossRefGoogle Scholar
Yang, T., Tang, Z., Xie, X., Carroll, R., Wang, G., Wang, Y., Dahmen, K.A., Liaw, P.K., and Zhang, Y.: Deformation mechanisms of Al0.1CoCrFeNi at elevated temperatures. Mater. Sci. Eng., A 684, 552 (2017).10.1016/j.msea.2016.12.110CrossRefGoogle Scholar
Komarasamy, M., Kumar, N., Tang, Z., Mishra, R.S., and Liaw, P.K.: Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1CoCrFeNi high entropy alloy. Mater. Res. Lett. 3, 30 (2015).10.1080/21663831.2014.958586CrossRefGoogle Scholar
Yu, P.F., Cheng, H., Zhang, L.J., Zhang, H., Jing, Q., Ma, M.Z., Liaw, P.K., Li, G., and Liu, R.P.: Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 655, 283 (2016).10.1016/j.msea.2015.12.085CrossRefGoogle Scholar
Kumar, N., Ying, Q., Nie, X., Mishra, R.S., Tang, Z., Liaw, P.K., Brennan, R.E., Doherty, K.J., and Cho, K.C.: High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater. Des. 86, 598 (2015).10.1016/j.matdes.2015.07.161CrossRefGoogle Scholar
Komarasamy, M., Alagarsamy, K., and Mishra, R.S.: Serration behavior and negative strain rate sensitivity of Al0.1CoCrFeNi high entropy alloy. Intermetallics 84, 20 (2017).CrossRefGoogle Scholar
Kumar, N., Mukherjee, M., and Bandyopadhyay, A.: Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Opt. Laser Technol. 88, 24 (2017).10.1016/j.optlastec.2016.08.018CrossRefGoogle Scholar
Eghlimi, A., Shamanian, M., Eskandarian, M., Zabolian, A., and Szpunar, J.A.: Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless-steel weldment joint by austenitic filler metal. Mater. Charact. 106, 208 (2015).CrossRefGoogle Scholar
Satoh, G., Yao, Y.L., and Qiu, C.: Strength and microstructure of laser fusion-welded Ti–SS dissimilar material pair. Int. J. Adv. Des. Manuf. Technol. 66, 469 (2013).10.1007/s00170-012-4342-6CrossRefGoogle Scholar
Mortezaie, A. and Shamanian, M.: An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel. Int. J. Pressure Vessels Piping 116, 37 (2014).CrossRefGoogle Scholar
Ramkumar, K.D., Kumar, P.S.G., Radhakrishna, V.S., and Kothari, K.: Studies on microstructure and mechanical properties of keyhole mode Nd:YAG laser welded Inconel 625 and duplex stainless steel, SAF 2205. J. Mater. Res. 30, 3288 (2015).10.1557/jmr.2015.276CrossRefGoogle Scholar
Sharma, S., Taiwade, R.V., and Vashishtha, H.: Investigation on the multi-pass gas tungsten arc welded Bi-metallic combination between nickel-based superalloy and Ti-stabilized austenitic stainless steel. J. Mater. Res. 32, 3055 (2017).CrossRefGoogle Scholar
Zhou, S., Chai, D., Yu, J., Ma, G., and Wu, D.: Microstructure characteristic and mechanical property of pulsed laser lap-welded nickel-based superalloy and stainless steel. J. Manuf. Process. 25, 220 (2017).10.1016/j.jmapro.2016.11.010CrossRefGoogle Scholar
Zhu, Z.G., Ng, F.L., Qiao, J.W., Liaw, P.K., Chen, H.C., Nai, S.M.L., Wei, J., and Bi, G.J.: Interplay between microstructure and deformation behavior of a laser-welded CoCrFeNi high entropy alloy. Mater. Res. Express 6, 046514 (2019).CrossRefGoogle Scholar
Sokkalingam, R., Sivaprasad, K., Muthupandi, V., and Duraiselvam, M.: Characterization of laser beam welded Al0.5CoCrFeNi high-entropy alloy. Key Eng. Mater. 775, 448 (2018).10.4028/www.scientific.net/KEM.775.448CrossRefGoogle Scholar
Nahmany, M., Hooper, Z., Stern, A., Geanta, V., and Voiculescu, I.: AlxCrFeCoNi high-entropy alloys: Surface modification by electron beam bead-on-plate melting. Metallogr., Microstruct., Anal. 5, 229 (2016).CrossRefGoogle Scholar
Wu, Z., David, S.A., Leonard, D.N., Feng, Z., and Bei, H.: Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy. Sci. Technol. Weld. Joining 23, 585 (2018).CrossRefGoogle Scholar
Martin, A.C. and Fink, C.: Initial weldability study on Al0.5CrCoCu0.1FeNi high-entropy alloy. Weld. World 63, 739750 (2019).10.1007/s40194-019-00702-7CrossRefGoogle Scholar
Issartel, C., Buscail, H., Caudron, E., Cueff, R., Riffard, F., Perrier, S., Jacquet, P., and Lambertin, M.: Influence of nitridation on the oxidation of a 304 steel at 800 °C. Corros. Sci. 46, 2191 (2004).CrossRefGoogle Scholar
Jinlong, L., Hongyun, L., and Tongxiang, L.: The grain size and special boundary dependence of corrosion resistance in 304 austenitic stainless steels. Mater. Chem. Phys. 163, 496 (2015).CrossRefGoogle Scholar
Hou, J., Zhang, M., Ma, S., Liaw, P.K., Zhang, Y., and Qiao, J.: Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng., A 707, 593 (2017).CrossRefGoogle Scholar
Li, D.Y. and Zhang, Y.: The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24 (2016).10.1016/j.intermet.2015.11.002CrossRefGoogle Scholar
Chowdhury, S.G., Das, S., and De, P.K.: Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel. Acta Mater. 53, 3951 (2005).CrossRefGoogle Scholar
Lach, L., Nowak, J., and Svyetlichnyy, D.: The evolution of the microstructure in AISI 304L stainless steel during the flat rolling-modeling by frontal cellular automata and verification. J. Mater. Process. Technol. 255, 488 (2018).CrossRefGoogle Scholar
Abreu, H.F.G., Carvalho, S.S., Neto, P.L., Santos, R.P., Freire, V.N., Silva, P.M.O., and Tavares, S.S.M.: Deformation induced martensite in an AISI 301LN stainless steel: Characterization and influence on pitting corrosion resistance. Mater. Res. 10, 359 (2007).CrossRefGoogle Scholar
Kou, S.: Welding Metallurgy, 2nd ed. (Wiley-Interscience, Hoboken, New Jersey, 2003); pp. 1, 160.Google Scholar
Gu, Y.L., Tao, C.H., Wei, Z.W., and Liu, C.K.: Microstructural evolution and mechanical properties of TIG welded superalloy GH625. Trans. Nonferrous Met. Soc. China 26, 100 (2016).10.1016/S1003-6326(16)64094-3CrossRefGoogle Scholar
Zhang, L., Li, X., Nie, Z., Huang, H., and Niu, L.: Comparison of microstructure and mechanical properties of TIG and laser welding joints of a new Al–Zn–Mg–Cu alloy. Mater. Des. 92, 880 (2016).CrossRefGoogle Scholar
Tokita, S., Kokawa, H., Sato, Y.S., and Fujii, H.T.: In situ EBSD observation of grain boundary character distribution evolution during thermo-mechanical process used for grain boundary engineering of 304 austenitic stainless steel. Mater. Charact. 131, 31 (2017).CrossRefGoogle Scholar
Milad, M., Zreiba, N., Elhalouani, F., and Baradai, C.: The effect of cold work on structure and properties of AISI 304 stainless steel. J. Mater. Process. Technol. 203, 80 (2008).CrossRefGoogle Scholar
Jo, M.G., J Kim, H., Kang, M., Madakashira, P.P., Park, E.S., Suh, J.Y., Kim, D.I., Hong, S.T., and Han, H.N.: Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi. Met. Mater. Int. 24, 73 (2018).CrossRefGoogle Scholar