Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T19:08:45.764Z Has data issue: false hasContentIssue false

Domain growth of Dy2O3 buffer layers on SrTiO3

Published online by Cambridge University Press:  31 January 2011

A. Catana
Affiliation:
IBM Research Division, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland
J-P. Locquet
Affiliation:
IBM Research Division, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland
Get access

Abstract

Dy2O3 layers have been grown on SrTiO3 by molecular beam epitaxy. X-ray and electron diffraction patterns clearly show that Dy2O3 grows epitaxially on SrTiO3 with {100} planes parallel to the substrate surface. Transmission electron microscopy reveals that the Dy2O3 film breaks up into small domains (10–40 nm). This leads to the formation of terraces which limits the structural perfection of thin overgrown DyBa2Cu3O7 by introducing steps and small misorientations (within 3°). The resulting surface corrugation does not preclude the growth of epitaxial c-axis DyBa2Cu3O7 films with a Tc0 of 86 K. Crystallographic analysis and image calculations show that the domain growth of Dy2O3 is associated with the formation of 90° rotation twins.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., Kirata, K., Hayashi, K., Kamigaki, K., and Terauchi, H., Phys. Rev. Lett. 65, 2684 (1990).CrossRefGoogle Scholar
2Nakamura, O., Chan, I. N., Guimpel, J., and Schuller, Ivan K., Appl. Phys. Lett. 59, 1240 (1991).Google Scholar
3Triscone, J. M., Fisher, O., Brunner, O., Antognazza, L., Kent, A. D., and Karkut, M.G., Phys. Rev. Lett. 64, 804 (1990).CrossRefGoogle Scholar
4Tabata, H., Kawai, T., and Kawai, S., Appl. Phys. Lett. 58, 1443 (1991).CrossRefGoogle Scholar
5Kanai, M., Kawai, T., and Kawai, S., Appl. Phys. Lett. 57, 198 (1990).CrossRefGoogle Scholar
6Mannhart, J., Schlom, D. G., Bednorz, I. G., and Mullet, K. A., Phys. Rev. Lett. 67, 2099 (1991).CrossRefGoogle Scholar
7Lee, J-W., Migliuolo, M., Stamper, A.K., Greve, D.W., Laughlin, D.E., and Schlesinger, T. E., Appl. Phys. Lett. 66, 4886 (1989).Google Scholar
8Witanachchi, S., Patel, S., Schaw, D.T., and Kwok, H.S., Appl. Phys. Lett. 55, 295 (1989).CrossRefGoogle Scholar
9Edwards, J. A., Chew, N. G., Goodyear, S. W., Satchell, J. S., Blenkinsop, S. E., and Humphryes, R. G., J. Less-Comm. Met. 164, 414 (1990).CrossRefGoogle Scholar
10Blamire, M.G., Morris, G.W., Somekh, R.E., and Evetts, J.E., J. Phys. D 20, 1330 (1987).Google Scholar
11Ying, Q.Y., Hilbert, C., Kumar, N., Eichman, D., Thompson, M., Kroger, H., and Hwang, D. M., Appl. Phys. Lett. 59, 3036 (1991).CrossRefGoogle Scholar
12Beauchamp, K. M., Zhang, Y-J., Johnson, B. R., Schultz, R. K., Spalding, G. C., Tsen, M., Wang, T., Evans, J. F., Mecartney, M. L., and Goldman, A. M., IEEE Trans. Magn. 27, 3090 (1991).CrossRefGoogle Scholar
13Hirata, K., Yamamoto, K., Iijima, K., Takada, J., Terashima, T., Bando, Y., and Mazaki, H., Appl. Phys. Lett. 56, 683 (1990).CrossRefGoogle Scholar
14Locquet, J-P. and Machler, E., J. Vac. Sci. Technol. A 10, 3100 (1992).CrossRefGoogle Scholar
15Stadelmann, P., Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
16Oishi, A., Teshima, H., Ohata, K., Izumi, H., Kawamoto, S., Morishita, T., and Tanaka, S., Appl. Phys. Lett. 59, 1902 (1991).CrossRefGoogle Scholar