Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T03:20:58.288Z Has data issue: false hasContentIssue false

Domain structure and electrical properties of highly textured PbZrxTi1−xO3 thin films grown on LaNiO3-electrode-buffered Si by metalorganic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

C. H. Lin
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
B. M. Yen
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
H. C. Kuo
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Haydn Chen
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
T. B. Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
G. E. Stillman
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Get access

Extract

Thin films of highly (100) textured fine-grain (lateral grain size ≅0.1 to 0.15 μm) PbZrxTi1−xO3 (PZT) (x = 0 to 0.7) were grown on conductive perovskite LaNiO3-buffered platinized Si substrates by metalorganic chemical vapor deposition. Domain configuration and crystalline orientation were studied using x-ray diffraction and transmission electron microscopy. The predominant domain boundaries of Ti-rich tetragonal-phase PZT and Zr-rich rhombohedral-phase PZT were found to be on the (110) planes and (100) planes, respectively. The equilibrium domain widths were observed and estimated numerically on the basis of transformation strain, grain size, and domain boundary energy. The peak value of the dielectric constant was 790 near the morphotropic boundary. Hysteresis behavior of these PZT thin films was demonstrated. A decrease in coercive field with the increment of Zr content was found; this variation was attributed to domain density and the multiplicity of polarization axes. Furthermore, the low leakage current (J ≤ 5 × 10−7 A/cm2 at V = 4 V) was observed for all samples, and the involvement of several possible conduction mechanisms was suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J.F. and de Araujo, C.A.P., Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Larsen, P.K., Cuppen, R., and Spierings, G.A., Ferroelectrics 128, 265 (1992).CrossRefGoogle Scholar
3.Robbins, W.P., Integr. Ferroelectr. 11, 179 (1995).CrossRefGoogle Scholar
4.Moazzami, R., Semicond. Sci. Technol. 10, 375 (1995).CrossRefGoogle Scholar
5.Itoh, H., Kashihara, K., Okudaira, T., Tsukamoto, K., and Akasaka, Y., IEEE IEDM Tech. Dig. 831 (1991).Google Scholar
6.Lee, J.J., Thio, C.L., and Desu, S.B., J. Appl. Phys. 78, 5073 (1995).CrossRefGoogle Scholar
7.Warren, W.L., Dimos, D., Tuttle, B.A., Pike, G.E., Schwartz, R.W., Clews, P.J., and McIntyre, D.C., J. Appl. Phys. 77, 6695 (1995).CrossRefGoogle Scholar
8.Scott, J.F., Araujo, C.A., Melnick, B.M., McMillan, L.D., and Zuleeg, R., J. Appl. Phys. 70, 382 (1991).CrossRefGoogle Scholar
9.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., and Fork, D.K., Appl. Phys. Lett. 63, 3592 (1993).CrossRefGoogle Scholar
10.Eom, C.B., Van Dover, R.B., Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., and Fleming, R.M., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
11.Foster, C.M., Bai, G.R., Csencsits, R., Vetrone, J., Jammy, R., Wills, L.A., Carr, E., and Amano, J., J. Appl. Phys. 81, 2349 (1997).CrossRefGoogle Scholar
12.Al-Shareef, H.N., Tuttle, B.A., Warren, W.L., Headley, T.J., Dimos, D., Voigt, J.A., and Nasby, R.D., J. Appl. Phys. 79, 1013 (1996).CrossRefGoogle Scholar
13.Yang, C.C., Chen, M.S., Hong, T.J., Wu, C.M., Wu, J.M., and Wu, T.B., Appl. Phys. Lett. 66, 2643 (1995).CrossRefGoogle Scholar
14.Tseng, T.T., Yang, R.P., Liu, K.S., and Lin, I.N., Appl. Phys. Lett. 70, 46 (1997).CrossRefGoogle Scholar
15.Chen, M.S., Wu, T.B., and Wu, J.M., Appl. Phys. Lett. 68, 1430 (1996).CrossRefGoogle Scholar
16.Yu, T., Chen, Y.F., Liu, Z.G., Xiong, S.B., Sun, L., Chen, X.Y., Shi, L.J., and Ming, N.B., Appl. Phys. Lett. 69, 2092 (1996).CrossRefGoogle Scholar
17.Tuttle, B.A., Headley, T.J., Al-Shareef, H.N., Voigt, J.A., Rodriguez, M., Michael, J., and Warren, W.L., J. Mater. Res. 11, 2309 (1996).CrossRefGoogle Scholar
18.Klee, M., Eusemann, R., Waser, R., Brand, W., and van Hal, H., J. Appl. Phys. 72, 1566 (1992).CrossRefGoogle Scholar
19.Dietz, G.W., Schumacher, M., Waser, R., Streiffer, S.K., Basceri, C., and Kingon, A.I., J. Appl. Phys. 82, 2359 (1997).CrossRefGoogle Scholar
20.Sudhama, C., Campbell, A.C., Maniar, P.D., Jones, R.E., Moazzami, R., Mogab, C.J., and Lee, J.C., J. Appl. Phys. 75, 1014 (1994).CrossRefGoogle Scholar
21.Al-Shareef, H.N., Kingon, A.I., Chen, X., Bellur, K.R., and Auciello, O., J. Mater. Res. 9, 2968 (1994).CrossRefGoogle Scholar
22.Arlt, G., Hennings, D., and de With, G., J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
23.Frey, M.H., Xu, Z., Han, P., and Payne, D.A., Ferroelectrics 207, 337 (1998).CrossRefGoogle Scholar
24.Streiffer, S.K., Parker, C.B., Romanov, A.E., Lefevre, M.J., Zhao, L., Speck, J.S., Foster, C.M., and Bai, G.R., J. Appl. Phys. 83, 2742 (1998).CrossRefGoogle Scholar
25.Demczyk, B.G., Rai, R.S., and Thomas, G., J. Am. Ceram. Soc. 73, 615 (1990).CrossRefGoogle Scholar
26.Lee, E.G., Wouters, D., Willems, G., and Maes, H., Appl. Phys. Lett. 70, 2404 (1997).CrossRefGoogle Scholar
27.Tuttle, B.A., Voigt, J.A., Garino, T., Goodnow, D.C., Schwartz, R.W., Lamppa, D.L., Headley, T.J., and Eatough, M.O., IEEE Proceedings of the Eighth International Symposium on Applications of Ferroelectrics, 1992, p. 344.CrossRefGoogle Scholar
28.Yoo, I.K. and Desu, S.B., IEEE Proceedings of the Eighth International Symposium on Applications of Ferroelectrics, 1992, p. 225.CrossRefGoogle Scholar