Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T15:39:41.824Z Has data issue: false hasContentIssue false

Ductile-to-brittle Transition in Superplastic Silicon Nitride Ceramics

Published online by Cambridge University Press:  31 January 2011

Guo-Dong Zhan
Affiliation:
National Institute for Materials Science, 1–1, Namiki, Tsukuba-shi, Ibaraki 305–0044, Japan
Mamoru Mitomo
Affiliation:
National Institute for Materials Science, 1–1, Namiki, Tsukuba-shi, Ibaraki 305–0044, Japan
Rong-Jun Xie
Affiliation:
National Institute for Materials Science, 1–1, Namiki, Tsukuba-shi, Ibaraki 305–0044, Japan
Keiji Kurashima
Affiliation:
National Institute for Materials Science, 1–1, Namiki, Tsukuba-shi, Ibaraki 305–0044, Japan
Get access

Abstract

The ductile-to-brittle transition was observed in a superplastic silicon nitride nanoceramic. This transition depends on strain rates and deformation temperatures. Generally, the material exhibits ductility at low strain rates and high deformation temperatures. At 1600 °C, the material is brittle when the strain rates are higher than 10−3/s. At a fixed strain rate of 10−3/s, the material exhibits brittleness when the temperatures are lower than 1550 °C. Moreover, critical strain rate for the brittle to ductile transition depends on deformation temperature. The critical strain rates increase with increases in the deformation temperature. When the deformation temperature is 1700 °C, the critical strain rates reach a maximum at 10−2/s. The extent of superplastic deformation in the present material was found to be limited not by intergranular cavitation but by the initiation and growth of surface cracks.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wakai, F., Komada, Y., Komada, S., Sakaguchi, S., Murayama, N., and Niihara, K., Nature (London) 344, 421–23 (1990).Google Scholar
Chen, I-W. and Xue, L.A., J. Am. Ceram. Soc. 73, 2585 (1990).CrossRefGoogle Scholar
Chen, I-W. and Hwang, S-L., J. Am. Ceram. Soc. 75, 1073 (1992).CrossRefGoogle Scholar
Rouxel, T., Wakai, F., and Izaki, K., J. Am. Ceram. Soc. 75, 2363 (1992).CrossRefGoogle Scholar
Wu, X. and Chen, I.W., J. Am. Ceram. Soc. 75, 2733 (1992).CrossRefGoogle Scholar
Hwang, S-L. and Chen, I-W., J. Am. Ceram. Soc. 77, 2775 (1994).Google Scholar
Rosenflanz, A. and Chen, I.W., J. Am. Ceram. Soc. 80, 1341 (1997).CrossRefGoogle Scholar
Burger, P., Duclos, R., and Crampon, J., J. Am. Ceram. Soc. 80, 879 (1997).CrossRefGoogle Scholar
Schneider, J.A. and Mukherjee, A.K., Ceram. Eng. Sci. Proc. 17, 341 (1996).CrossRefGoogle Scholar
Rossignol, F., Rouxel, T., Besson, J.L., Goursat, P., and Lespade, P., J. Phys. III 5, 127 (1995).Google Scholar
Rouxel, T., Rossignol, F., Besson, J.L., and Goursat, P., J. Mater. Res. 12, 480 (1997).CrossRefGoogle Scholar
Mitomo, M., Hirotsuru, H., Suematsu, H., and Nishimura, T., J. Am. Ceram. Soc. 78, 211 (1995).CrossRefGoogle Scholar
Nishimura, T., Bando, Y., Mitomo, M., and Hirotsuru, H., in Fourth Euro Ceramics, edited by Bellosi, A.. Gruppo Editoriale Fuenza Editrice S.P.A., Riccione, Italy. (1995), Vol. 4, pp. 265–70.Google Scholar
Wang, C-M., Mitomo, M., Nishimura, T., and Bando, Y., J. Am. Ceram. Soc. 80, 1213 (1997).CrossRefGoogle Scholar
Kondo, N., Wakai, F., Nishioka, T., and Yamakawa, A., J. Mater. Sci. Lett. 14, 1369 (1995).CrossRefGoogle Scholar
Nishimura, T., Zhan, G-D., Mitomo, M., and Sato, H., Mater. Sci. Forum 304–306, 477 (1999).CrossRefGoogle Scholar
Zhan, G-D., Mitomo, M., Nishimura, T., Xie, R-J., Sakuma, T., and Ikukara, Y., J. Am. Ceram. Soc. 83, 841 (2000).CrossRefGoogle Scholar
Zhan, G-D., Mitomo, M., Xie, R-J., and Kurashima, K., Acta Mater. 48, 2373 (2000).CrossRefGoogle Scholar
Zhan, G-D., Mitomo, M., Sakuma, T., and Ikuhara, Y., J. Mater. Res. 15, 1551 (2000).CrossRefGoogle Scholar
Xie, R-J., Mitomo, M., Zhan, G-D., and Emoto, H., J. Am. Ceram. Soc. 83, 2529 (2000).CrossRefGoogle Scholar
Xie, R-J., Mitomo, M., and Zhan, G-D., Acta Mater. 48, 2049 (2000).CrossRefGoogle Scholar
Hirosaki, N., Akimune, Y., and Mitomo, M., J. Ceram. Soc. Jpn. 101, 1239 (1993).CrossRefGoogle Scholar
Cinibulk, M.K., Kleebe, H-J., and Rühle, M., J. Am. Ceram. Soc. 76, 426 (1993).CrossRefGoogle Scholar
Panda, P.C., Paj, R., and Morgan, P.E.D., J. Am. Ceram. Soc. 68, 522 (1985).CrossRefGoogle Scholar
Wang, J-G. and Raj, R., J. Am. Ceram. Soc. 67, 399 (1984).CrossRefGoogle Scholar
Lange, F.F., Clarke, D.R., and Davis, B.I., J. Mater. Sci. 15, 611 (1980).CrossRefGoogle Scholar
Wilkinson, D.S., J. Am. Ceram. Soc. 81, 275 (1998).CrossRefGoogle Scholar
Raj, R. and Chyung, C.K., Acta Metall. 29, 159 (1981).CrossRefGoogle Scholar
Dryden, J.R., Kucerovsky, D., Wilkinson, D.S., and Watt, D.F., Acta Metall. 37, 2007 (1989).CrossRefGoogle Scholar
Tsai, R.L. and Raj, R., Acta. Metall. 30, 1043 (1982).CrossRefGoogle Scholar
Evans, A.G. and Rana, A., Acta Metall. 28, 129 (1980).CrossRefGoogle Scholar
Raj, R., J. Am. Ceram. Soc. c–476 (1982).Google Scholar
Wang, J-G. and Raj, R., J. Am. Ceram. Soc. 67, 385 (1984).CrossRefGoogle Scholar