Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T16:27:56.389Z Has data issue: false hasContentIssue false

Effect of in situ boron doping on properties of silicon germanium films deposited by chemical vapor deposition at 400 °C

Published online by Cambridge University Press:  31 January 2011

Sherif Sedky
Affiliation:
Department of Engineering Physics, Faculty of Engineering, Cairo University, 12211 Giza, Egypt
Ann Witvrouw
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
Annelies Saerens
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
Paul Van Houtte
Affiliation:
Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
Jef Poortmans
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
Kris Baert
Affiliation:
Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B3001 Leuven, Belgium
Get access

Abstract

This paper reports on the role of boron in situ doping on enhancing crystallization of silicon germanium deposited at 400 °C and 2 torr. The dependence of growth rate on germanium content and boron concentration is investigated. The minimum boron concentration and the minimum germanium content required for crystallizing the as-grown layers is experimentally determined. The texture and grain microstructure of doped and undoped poly SiGe layers has been investigated by means of x-ray diffraction spectroscopy and transmission electron microscopy. The low deposition temperature coupled with the low tensile stress of the polycrystalline material enable postprocessing of surface micromachined microelectromechanical systems on top of standard complementry metal oxide semiconductor wafers with Al interconnects. Furthermore, the resistivity of the as-grown layers is as low as 1 mΩ cm, and hence, it can be used as a seeding layer for polycrystalline Si solar cells compatible with glass substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kamins, T., Mandurah, M., and Saraswat, K., J. Electrochem. Soc. 125, 927 (1978).CrossRefGoogle Scholar
2Sedky, S., Witvrouw, A., Bender, H., and Baert, K., IEEE Trans. Electron Devices 48, 1 (2001).CrossRefGoogle Scholar
3Franke, A.E., Bilic, D., Chang, D.T., Jones, P.T., King, T.J., Howe, R.T., and Johnson, G.C., Post-CMOS Integration of Germanium Microstructures, Twelfth IEEE International Conference on Micro Electro Mechanical Systems, MEMS ’99, Orlando, FL, Jan. 17–21, 1999 (IEEE, Piscataway, NJ, 1999), pp. 630637.CrossRefGoogle Scholar
4King, T.J. and Saraswat, K., IEEE Trans. Electron Devices 41, 1581 (1994).CrossRefGoogle Scholar
5Lin, H.C., Jung, T.G., Lin, H.Y., and Chang, C.Y., Appl. Phys. Lett. 65, 1700 (1994).CrossRefGoogle Scholar
6King, T.J., Pfiester, J.R., Shott, J.D., McVittie, J.P., and Saraswat, K., IEDM Tech. Dig. 253 (1990).Google Scholar
7King, T.J. and Saraswat, K.C., J. Electrochem. Soc. 141, 2235 (1994).CrossRefGoogle Scholar
8King, T.J. and Saraswat, K.C., IEDM Tech. Dig. 567 (1991).Google Scholar
9Bang, D.S., Cao, M., Wang, A., and Saraswat, K., Appl. Phys. Lett. 66, 195 (1995).CrossRefGoogle Scholar
10Kamins, T. and Meyer, D., Appl. Phys. Lett. 61, 90 (1992).CrossRefGoogle Scholar
11Garone, P.M., Sturm, J.C., and Schwartz, P.V., Appl. Phys. Lett. 56, 1275 (1990).CrossRefGoogle Scholar
12Sedky, S., Witvrouw, A., Caymax, M., Saerens, A., and Van Houtte, P., Effect of Deposition Conditions on the Structural and Mechanical Properties of Poly SiGe (Mater. Res. Soc. Symp. Proc. 609, Warrendale, PA, 2000), pp. A8.5.17.Google Scholar
13Sedky, S., Fiorini, P., Caymax, M., Loreti, S., Baert, K., Hermans, L., and Mertens, R., J. Micromech. Microeng. 7, 365 (1998).CrossRefGoogle Scholar
14Lin, H.C., Chang, C.Y., Tsai, W.C., Chang, T.C., Jung, T.G., and Lin, H.Y., J. Electrochem. Soc. 141, 2559 (1994).CrossRefGoogle Scholar
15Li, V.Z., Mirabedini, M.R., Kuehn, R.T., Wortman, J.J., Öztrk, M.C., Batchelor, D., Christensen, K., and Maher, D.M., Appl. Phys. Lett. 71, 3388 (1997).CrossRefGoogle Scholar
16Lin, H., Jung, T., Lin, H., Chang, C., Lei, T., Wang, P., Deng, R., Lin, J., and Chao, C., Appl. Phys. 74, 5395 (1993).CrossRefGoogle Scholar
17Scafidi, P., Cali, J., and Bustarret, E., in Polycrystalline Thin Films: Structure, Texture, Properties, and Applications II, edited by Frost, H.J., Parker, M.A., Ross, C.A., and Holm, E.A. (Mater. Res. Soc. Symp. Proc. 403, Pittsburgh, PA, 1996), pp. 379384.Google Scholar
18Edelman, F., Raz, T., Komen, Y., Stolzer, M., Werner, P., Zaumseil, P., Osten, H-J., Griesche, J., and Capitan, M., Thin Solid Films 337, 152 (1999).CrossRefGoogle Scholar
19Franke, A.E., Bilic, D., Chang, D., Jones, P.T., King, T.J., Howe, R.T., and Johnson, G.C., in Proceedings of the 1999 International Conference on Solid-State Sensors and Actuators, Transducers ’99, Sendai, Japan, 1999, pp. 530533.Google Scholar
20Franke, A.E., Jia, Y., Wu, M.T., King, T.J., and Howe, R.T., Solid-State Sens. Actuator Workshop Techn. Dig. (June 2000), pp. 1821.Google Scholar
21Sedky, S., Fiorini, P., Baert, K., Hermans, L., and Mertens, R., IEEE Trans. Electron Devices 46, 675 (1999).CrossRefGoogle Scholar
22Geiger, W., Folkmer, B., Sobe, U., Sandmaier, H., and Lang, W., Int. Conf. Solid State Sens. Actuators 2, 1129 (1997).CrossRefGoogle Scholar
23Vellekoop, M.J., Lubking, G.W., Sarro, P.M., and Venema, A., Sens.Actuators, A A44, 249 (1994).CrossRefGoogle Scholar
24Miura, H., Ohta, H., Okamoto, N., and Kaga, T., Appl. Phys. Lett. 60, 2746 (1992).CrossRefGoogle Scholar
25Cao, M., Wang, A.W., and Saraswat, K.C., in Process Physics and Modeling in Semiconductor Technology, edited by Srinivasan, G.R., Taniguichi, K., and Murphy, C.S., PV 93–6 (The Electrochemical Society Proceedings Series PV 93–6, Pennington, NJ, 1993), pp. 350356.Google Scholar
26Kamins, T., Polycrystalline Silicon for Integrated Circuit Applications (Kluwer Academic, Dordrecht, The Netherlands, 1988), Chap. 2.CrossRefGoogle Scholar
27Sedky, S., Witvrouw, A., and Baert, K., in The 11th International Conference on Solid State Sensors and Actuators, June 11–14, (Springer-Verlag, Munich, Germany, 2001), pp. 988991.Google Scholar
28King, T.J. and Saraswat, K.C., IEEE Electron Device Lett. 13, 309 (1992).CrossRefGoogle Scholar