Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:34:27.452Z Has data issue: false hasContentIssue false

Effect of ion implant dose on the mechanical properties of polyethersulfone films

Published online by Cambridge University Press:  31 January 2011

Manuel Luis B. Palacio
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., Minneapolis, Minnesota 55455
Yongquiang Wang
Affiliation:
Institute of Technology Characterization Facility, University of Minnesota, 100 Union St. S.E., Minneapolis, Minnesota 55455
William W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., Minneapolis, Minnesota 55455
Get access

Abstract

Films of poly(ether sulfone) have been implanted with 50-keV As+ in the dose range of 1015 to 1017 ions/cm2. Nanoindentation tests were then conducted on these films using a conical diamond tip with a 90° included angle, applying loads from 10 μN to 2 mN. The modulus and hardness were evaluated from the load–displacement data using the elastic unloading [J. Mater. Res. 7, 1564 (1992)] and the elastic–plastic unloading [J. Mater. Res. 13, 421 (1998)] models. The latter approach gave more reliable values for the mechanical properties since it is not as sensitive to creep-in effects. The implanted film showed as much as a twofold increase in hardness compared to the unimplanted polymer. However, the films with the highest dose did not exhibit the maximum values for the mechanical properties. Hardness and modulus values increased with increasing implantation dose up to 1 × 1017 ions/cm2 but dropped at higher doses, presumably due to a combination of sputtering of material and surface roughening. The dose dependence of the mechanical properties is observed to have the same trend as are reported for the electrical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, Y., Mohite, S.S., Bridwell, L.B., Geidd, R.E., and Sofield, C.J., J. Mater. Res. 8, 388 (1993).CrossRefGoogle Scholar
2.Liu, S., Liu, Z., Zhai, B., and Wang, Z., Vacuum 39, 271 (1989).CrossRefGoogle Scholar
3.Lee, E.H., Lewis, M.B., Blau, P.J., and Mansur, L.K., J. Mater. Res. 6, 610 (1991).CrossRefGoogle Scholar
4.Lee, Y., Lee, E.H., and Mansur, L.K., Surf. Coatings Technol. 51, 267 (1992).CrossRefGoogle Scholar
5.Rao, G.R., Wang, Z.L., and Lee, E.H., J. Mater. Res. 8, 927 (1993).CrossRefGoogle Scholar
6.Bull, S.J., McCabe, A.R., and Jones, A.M., Surf. Coat. Technol. 64, 87 (1994).CrossRefGoogle Scholar
7.Pivin, J.C., Thin Solid Films 263, 185 (1995).CrossRefGoogle Scholar
8.Rao, G.R., Lee, E.H., Bhattacharya, R., and McCormick, A.W., J. Mater. Res. 10, 190 (1995).CrossRefGoogle Scholar
9.Swain, M.V., Perry, A.J., Treglio, J.R., Elkind, A., and Demaree, J.D., J. Mater. Res. 12, 1917 (1997).CrossRefGoogle Scholar
10.Wang, Y., Bridwell, L.B., and Geidd, R.E., in Desk Reference of Functional Polymers: Syntheses and Applications, edited by Arshady, R. (ACS, Washington, DC, 1997), pp. 387404.Google Scholar
11.Hopkins, J. and Badyal, J.P.S., Macromolecules 27, 5498 (1994).Google Scholar
12.Miller, B., Plast. World 44, 28 (1986).Google Scholar
13.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
14.Gerberich, W.W., Yu, W., Kramer, D., Strojny, A., Bahr, D., Lilleoden, E., and Nelson, J., J. Mater. Res. 13, 421 (1998).CrossRefGoogle Scholar
15.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
16.Bridwell, L.B., Geidd, R.E., Wang, Y.Q., Mohite, S.S., Jahnke, T., Brown, I.M., Bedell, C.J., and Sofield, C.J., Nucl. Instrum. Methods B56/57, 656 (1991).CrossRefGoogle Scholar
17.Wang, Y.Q., Bridwell, L.B., Geidd, R.E., and Murphy, M.J., Nucl. Instrum. Methods B56/57, 660 (1991).CrossRefGoogle Scholar
18.Wang, Y.Q., Geidd, R.E., Mohite, S.S., Jahnke, T., Bridwell, L.B., and C.J. Sofield, Mater. Lett. 12, 21 (1991).CrossRefGoogle Scholar
19.Briscoe, B.J., Fiori, L., and Petillo, E., J. Phys. D: Appl. Phys. 31, 2395 (1998).CrossRefGoogle Scholar
20.Ziegler, J.F., Biersack, J.P., and Littmark, U.,The stopping and ranges of ions in solids (Pergamon, Oxford, United Kingdom, 1985).Google Scholar
21.Modern Plastics Encyclopedia(McGraw-Hill, NY, 1999).Google Scholar
22.Strojny, A., Xia, X., Tsou, A., and Gerberich, W.W., J. Adhes. Sci. Technol. 12, 1299 (1998).CrossRefGoogle Scholar
23.Gerberich, W.W., Strojny, A., Yoder, K., and Cheng, L.S., J. Mater. Res. 14, 2210 (1999).CrossRefGoogle Scholar
24.Kim, E.J., Takeda, T., and Ohki, Y., IEEE Trans. Dielectr. Electr. Insul. 3, 386 (1996).CrossRefGoogle Scholar
25.Kurmaev, E.Z.,Winarski, R.P., Pivin, J.C., Ederer, D.L., Sharmin, S.N.Moewes, A., Endo, K., Ida, T., Chang, G.S., and Whang, C.N., J. Electron Spectrosc. Relat. Phenom. 110, 87 (2000).CrossRefGoogle Scholar