Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T04:31:19.808Z Has data issue: false hasContentIssue false

Effect of La doping in transparent 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 ceramics fabricated by conventional sintering

Published online by Cambridge University Press:  24 July 2014

Ichiro Fujii*
Affiliation:
Department of Materials Chemistry, Ryukoku University, Seta, Otsu 520-2194, Japan
Hiroyuki Ono
Affiliation:
Department of Materials Chemistry, Ryukoku University, Seta, Otsu 520-2194, Japan
Takahiro Wada
Affiliation:
Department of Materials Chemistry, Ryukoku University, Seta, Otsu 520-2194, Japan
*
a)Address all correspondence to this author. e-mail: ifujii@rins.ryukoku.ac.jp
Get access

Abstract

Transparent 0.67(Pb1−xLax)(Mg1/3Nb2/3)O3–0.33(Pb1−xLax)TiO3 (x = 0–0.05) ceramics were successfully prepared without using a hot-pressing technique. The optical transmittance at the wave length of 400–2000 nm increased with increasing lanthanum (La) content, x from 0 to 0.03. The transmittance at 600–2000 nm further increased (with the highest transmittance of 68% at 2000 nm for ceramics with thickness of 0.5 mm) at x = 0.04 and 0.05, while the transmittance at 400–600 nm decreased. X-ray diffraction patterns suggested that the overall increase in the transmittance with x was associated with a change in the crystal systems from a monoclinic phase to a pseudocubic phase, and the decrease at x = 0.04 and 0.05 was related to the formation of an impurity second phase. Their microstructures and dielectric properties were also studied.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jiang, H., Zou, Y.K., Chen, Q., Li, K.K., Zhang, R., Wang, Y., Ming, H., and Zheng, Z.: Transparent electrooptic ceramics and devices. Proc. SPIE 5644, 380 (2005).Google Scholar
Cheng, J.Y. and Chen, Q.: An ultrafast phase modulator for 3D imaging. Proc. SPIE 6068, 60680L (2006).Google Scholar
Tokuhashi, K., Ashizawa, K., Ishii, D., Okamoto, S., Yamanaka, N., Wakayama, K., and Nashimoto, K.: MPCP based active optical access network with PLZT high-speed optical switch. OSN 9(2), 118 (2012).Google Scholar
Nakamura, K., Miyazu, J., Sasaura, M., and Fujiura, K.: Wide-angle, low-voltage electrooptic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3. Appl. Phys. Lett. 89(13), 131115 (2006).Google Scholar
Inagaki, T., Imai, T., Miyazu, J., and Kobayashi, J.: Polarization independent varifocal lens using KTN crystals. Opt. Lett. 38(15), 2673 (2013).Google Scholar
Ruan, W., Li, G.R., Zeng, J.T., Bian, J.J., Kamzina, L.S., Zeng, H.R., Zheng, L.Y., and Dingy, A.L.: Large electrooptic effect in La-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramic by two-stage sintering. J. Am. Ceram. Soc. 93(8), 2128 (2010).Google Scholar
Haertling, G.H.: PLZT electrooptic materials and applications - A review. Ferroelectrics 75(1–2), 25 (1987).Google Scholar
McHenry, D.A., Giniewicz, J., Jang, S.J., Bhalla, A., and Shrout, T.R.: Optical properties of hot-pressed relaxor ferroelectrics. Ferroelectrics 93, 351 (1989).Google Scholar
McHenry, D.A., Giniewicz, J.R., Shrout, T.R., Jang, S.J., and Bhalla, A.S.: Electrical and optical - properties of relaxor ferroelectrics. Ferroelectrics 102, 161 (1990).Google Scholar
McHenry, D.A., Giniewicz, J.R., Jang, S.J., Shrout, T.R., and Bhalla, A.S.: Optical and electrooptical properties of lead magnesium niobate - lead titanate. Ferroelectrics 107, 45 (1990).Google Scholar
Kim, N., McHenry, D.A., Jang, S.J., and Shrout, T.R.: Fabrication of optically transparent lead magnesium niobate polycrystalline ceramics using hot isostatic pressing. J. Am. Ceram. Soc. 73(4), 923 (1990).Google Scholar
Giniewicz, J., McHenry, D., Jang, S.J., and Shrout, T.R.: Hot uniaxial pressing of relaxor ferroelectrics in the PMN-PT system. Ferroelectrics 93, 395 (1989).Google Scholar
Yoshikawa, Y. and Tsuzuki, K.: Fabrication of transparent lead lanthanum zirconate titanate ceramics from fine powders by 2-stage sintering. J. Am. Ceram. Soc. 75(9), 2520 (1992).Google Scholar
Kong, L.B., Ma, J., Zhu, W., and Tan, O.K.: Preparation and characterization of translucent PLZT8/65/35 ceramics from nanosized powders produced by a high-energy ball-milling process. Mater. Res. Bull. 36(9), 1675 (2001).Google Scholar
Kong, L.B., Ma, J., Zhu, W., and Tan, O.K.: Transparent PLZT8/65/35 ceramics from constituent oxides mechanically modified by high-energy ball milling. J. Mater. Sci. Lett. 21(3), 197 (2002).Google Scholar
Snow, G.S.: Fabrication of transparent electrooptic PLZT ceramics by atmosphere sintering. J. Am. Ceram. Soc. 56(2), 91 (1973).Google Scholar
Sun, P., Xu, C.N., Akiyama, M., and Watanabe, T.: Controlled oxygen partial pressure sintering of (Pb,La)(Zr,Ti)O3 ceramics. J. Am. Ceram. Soc. 82(6), 1447 (1999).Google Scholar
Choi, J.J., Ryu, J., and Kim, H.E.: Microstructural evolution of transparent PLZT ceramics sintered in air and oxygen atmospheres. J. Am. Ceram. Soc. 84(7), 1465 (2001).Google Scholar
Uchino, K.: Electrooptic ceramics, and their display applications. Ceram. Int. 21(5), 309 (1995).CrossRefGoogle Scholar
Kamzina, L.S., Wei, R.A., Li, G., Zeng, J., and Ding, A.: Electrooptical properties of PMN-xPT compounds: Single crystals and transparent ferroelectric ceramic. Phys. Solid State 52(10), 2142 (2010).Google Scholar
Fujii, I., Yoshida, R., Imai, T., Yamazoe, S., and Wada, T.: Fabrication of transparent Pb(Mg1/3Nb2/3)O3-PbTiO3 based ceramics by conventional sintering. J. Am. Ceram. Soc. 96(12), 3782 (2013).Google Scholar
Wan, X.M., Luo, H.S., Zhao, X.Y., Wang, D.Y., Chan, H.L.W., and Choy, C.L.: Refractive indices and linear electrooptic properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals. Appl. Phys. Lett. 85(22), 5233 (2004).CrossRefGoogle Scholar
Badillo, F.A.L., Eiras, J.A., Milton, F.P., and Garcia, D.: Preparation and microstructural, structural, optical and electrooptical properties of La doped PMN-PT transparent ceramics. Opt. Photonics J. 2, 157 (2012).Google Scholar
Viehland, D., Kim, M.C., Xu, Z., and Li, J.F.: Long-time present tweedlike precursors and paraelectric clusters in ferroelectrics containing strong quenched randomness. Appl. Phys. Lett. 67(17), 2471 (1995).Google Scholar
Gupta, S.M. and Viehland, D.: Role of charge compensation mechanism in La-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics: Enhanced ordering and pyrochlore formation. J. Appl. Phys. 80(10), 5875 (1996).Google Scholar
Gupta, S.M. and Viehland, D.: Compositional studies of lanthanum-modified morphotropic phase boundary Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J. Am. Ceram. Soc. 80(2), 477 (1997).Google Scholar
Swartz, S.L. and Shrout, T.R.: Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17(10), 1245 (1982).Google Scholar
Kong, L.B., Ma, J., Zhu, W., and Tan, O.K.: Translucent PMN and PMN-PT ceramics from high-energy ball milling derived powders. Mater. Res. Bull. 37(1), 23 (2002).Google Scholar
Peelen, J.G.J. and Metselaar, R.: Light scattering by pores in polycrystalline materials: Transmission properties of alumina. J. Appl. Phys. 45(1), 216 (1974).Google Scholar
Wan, X.M., Chan, H.L.W., Choy, C.L., Zhao, X.Y., and Luo, H.S.: Optical properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals studied by spectroscopic ellipsometry. J. Appl. Phys. 96(3), 1387 (2004).Google Scholar
Kim, N., Huebner, W., Jang, S.J., and Shrout, T.R.: Dielectric and piezoelectric properties of lanthanum-modified lead magnesium niobium-lead titanate ceramics. Ferroelectrics 93, 341 (1989).CrossRefGoogle Scholar
Singh, A.K., Pandey, D., and Zaharko, O.: Powder neutron diffraction study of phase transitions in and a phase diagram of (1-x) Pb(Mg1/3Nb2/3)O3-xPbTiO3. Phys. Rev. B 74(2), 024101 (2006).Google Scholar
Noheda, B., Cox, D.E., Shirane, G., Gao, J., and Ye, Z.G.: Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B 66(5), 054104 (2002).Google Scholar
Cross, L.E.: Relaxor ferroelectrics. Ferroelectrics 76(3–4), 241 (1987).Google Scholar
Samara, G.A.: The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys.: Condens. Matter 15(9), R367 (2003).Google Scholar
Cao, H., Li, J.F., and Viehland, D.: Structural origin of the relaxor-to-normal ferroelectric transition in Pb(Mg1/3Nb2/3O3)-xPbTiO3. J. Appl. Phys. 100(3), 034110 (2006).Google Scholar
Tu, C.S., Wang, F.T., Chien, R.R., Schmidt, V.H., and Tuthill, G.F.: Electric-field effects of dielectric and optical properties in Pb(Mg1/3Nb2/3)0.65Ti0.35O3 crystal. J. Appl. Phys. 97(6), 064112 (2005).Google Scholar