Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T06:52:08.808Z Has data issue: false hasContentIssue false

Effect of nanomaterials in platinum-decorated carbon nanotube paste-based electrodes for amperometric glucose detection

Published online by Cambridge University Press:  31 January 2011

Jining Xie*
Affiliation:
Nanomaterials and Nanotubes Research Laboratory, Department of Electrical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701
Shouyan Wang
Affiliation:
Nanomaterials and Nanotubes Research Laboratory, Department of Electrical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701
L. Aryasomayajula
Affiliation:
Nanomaterials and Nanotubes Research Laboratory, Department of Electrical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701
V.K. Varadan
Affiliation:
Nanomaterials and Nanotubes Research Laboratory, Department of Electrical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701
*
a)Address all correspondence to this author. e-mail: jxie@uark.edu
Get access

Abstract

The effect of nanomaterials in platinum-decorated, multiwalled, carbon nanotube-based electrodes for amperometric glucose sensing was investigated by a comparative study with other carbon material-based electrodes such as graphite, glassy carbon, and multiwalled carbon nanotubes. Scanning and transmission electron microscopy and x-ray diffraction were used to investigate their morphologies and crystallinities. Electrochemical impedance spectroscopy was conducted to compare the electrochemical characteristics of these electrodes. The glucose-sensing results from the chronoamperometric measurements indicated that carbon nanotubes improve the linearity of the current response to glucose concentrations over a wide range, and that platinum decoration of the carbon nanotubes produces improved electrochemical performance with a higher sensitivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Salata, O.V.: Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, 1 2004Google Scholar
2Wilson, G.S.Hu, Y.: Enzyme-based biosensors for in vivo measurements. Chem. Rev. 100, 2693 2000CrossRefGoogle ScholarPubMed
3Chaubey, A.Malhotra, B.D.: Mediated biosensors. Biosens. Bioelectron. 17, 441 2002CrossRefGoogle ScholarPubMed
4Castillo, J., Gáspár, S., Leth, S., Niculescu, M., Mortari, A., Bontidean, I., Soukharev, V., Dorneanu, S.A., Ryabov, A.D.Csöregi, E.: Biosensors for life quality design, development and applications. Sens. Actuators, B 102, 179 2004Google Scholar
5Lojou, É.Bianco, P.: Application of the electrochemical concepts and techniques to amperometric biosensor devices. J. Electroceram. 16, 79 2006CrossRefGoogle Scholar
6Updike, S.J.Hicks, G.P.: The enzyme electrode. Nature 214, 986 1967CrossRefGoogle ScholarPubMed
7Hrapovic, S.Luong, J.H.T.: Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: Preparation and characterization. Anal. Chem. 75, 3308 2003CrossRefGoogle ScholarPubMed
8Yuan, J., Wang, K.Xia, X.: Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater. 15, 803 2005Google Scholar
9You, T., Niwa, O., Tomita, M.Hirono, S.: Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal. Chem. 75, 2080 2003CrossRefGoogle ScholarPubMed
10Selvaraju, T.Ramaraj, R.: Electrochemically deposited nanostructured platinum on Nafion coated electrode for sensor applications. J. Electroanal. Chem. 585, 290 2005CrossRefGoogle Scholar
11Olivia, H., Sarada, B.V., Honda, K.Fujishima, A.: Continuous glucose monitoring using enzyme-immobilized platinized diamond microfiber electrodes. Electrochim. Acta 49, 2069 2004CrossRefGoogle Scholar
12Sotiropoulou, S., Gavalas, V., Vamvakaki, V.Chaniotakis, N.A.: Novel carbon materials in biosensor systems. Biosens. Bioelectron. 18, 211 2003Google Scholar
13Jonsson, G.Gorton, L.: Amperometric glucose sensor made by modification of a graphite electrode surface with immobilized glucose oxidase and adsorbed mediator. Biosensors 1, 355 1985CrossRefGoogle ScholarPubMed
14Marcinkeviciene, J.Kulys, J.: Bienzyme strip-type glucose sensor. Biosens. Bioelectron. 8, 209 1993Google Scholar
15Lawrence, N.S., Deo, R.P.Wang, J.: Biocatalytic carbon paste sensors based on a mediator pasting liquid. Anal. Chem. 76, 3735 2004Google Scholar
16van der Linden, W.E.Dieker, J.W.: Glassy carbon as electrode material in electro-analytical chemistry. Anal. Chim. Acta 119, 1 1980Google Scholar
17Dong, S., Wang, B.Liu, B.: Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosens. Bioelectron. 7, 215 1992Google Scholar
18Hall, S.B., Yang, X., Officer, D.L., Belcher, W.J.Burrell, A.K.: Glassy carbon based sensors. Synth. Met. 137, 1429 2003Google Scholar
19Guiseppi-Elie, A., Lei, C.Baughman, R.H.: Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13, 559 2002CrossRefGoogle Scholar
20Song, C., Pehrsson, P.E.Zhao, W.: Optical enzymatic detection of glucose based on hydrogen peroxide-sensitive HiPco carbon nanotubes. J. Mater. Res. 21, 2817 2006CrossRefGoogle Scholar
21Wang, S.G., Zhang, Q., Wang, R., Yoon, S.F., Ahn, J., Yang, D.J., Tian, J.Z., Li, J.Q.Zhou, Q.: Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors. Electrochem. Commun. 5, 800 2003Google Scholar
22Sotiropoulou, S.Chaniotakis, N.A.: Carbon nanotube array-based biosensor. Anal. Bioanal. Chem. 375, 103 2003Google Scholar
23Lin, Y., Lu, F., Tu, Y.Ren, Z.: Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191 2004Google Scholar
24Guan, W-J., Li, Y., Chen, Y-Q., Zhang, X-B.Hu, G-Q.: Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens. Bioelectron. 21, 508 2005CrossRefGoogle ScholarPubMed
25Wang, J.Musameh, M.: Enzyme-dispersed carbon-nanotube electrodes: A needle microsensor for monitoring glucose. Analyst 128, 1382 2003CrossRefGoogle ScholarPubMed
26Wang, J.Musameh, M.: Carbon nanotube/Teflon composite electrochemical sensors and biosensors. Anal. Chem. 75, 2075 2003CrossRefGoogle ScholarPubMed
27Hrapovic, S., Liu, Y., Male, K.B.Luong, J.H.T.: Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 76, 1083 2004Google Scholar
28Yang, M., Yang, Y., Liu, Y., Shen, G.Yu, R.: Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron. 21, 1125 2006Google Scholar
29Cui, H-F., Ye, J-S., Liu, X., Zhang, W-D.Sheu, F-S.: Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: A strong electrocatalyst for glucose oxidation. Nanotechnology 17, 2334 2006Google Scholar
30Xie, J., Wang, S., Aryasomayajula, L.Varadan, V.K.: Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing. Nanotechnology 18, 065503 2007Google Scholar
31Varadan, V.K.Xie, J.: Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD. Smart Mater. Struct. 11, 610 2002Google Scholar
32Xie, J., Zhang, N.Varadan, V.K.: Functionalization of carbon nanotubes in platinum decoration. Smart Mater. Struct. 15, S5 2006Google Scholar
33Pocard, N.L., Alsmeyer, D.C., McCreery, R.L., Neenan, T.X.Callstrom, M.R.: Doped glassy carbon: A new material for electrocatalysis. J. Mater. Chem. 2, 771 1992Google Scholar
34Kodera, S., Ninami, N.Ino, T.: The structure of glassy carbon. Jpn. J. Appl. Phys. 25, 328 1986Google Scholar
35Brunauer, S., Emmett, P.H.Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 1938Google Scholar
36Warren, B.E.: X-ray diffraction in random layer lattices. Phys. Rev. 59, 693 1941Google Scholar
37Franklin, R.E.: The interpretation of diffuse x-ray diagrams of carbon. Acta Crystallogr. 3, 107 1950Google Scholar
38Wang, X., Zhang, G.M., Zhang, Y.L., Li, F.Y., Yu, R.C., Jin, C.Q.Zou, G.T.: Graphitization of glassy carbon prepared under high temperatures and high pressures. Carbon 41, 188 2004Google Scholar
39Kumar, M.K.Ramaprabhu, S.: Nanostructured Pt functionalized multiwalled carbon nanotube based hydrogen sensor. J. Phys. Chem. B 110, 11291 2006CrossRefGoogle ScholarPubMed
40Huang, J-E., Guo, D-J., Yao, Y-G.Li, H-L.: High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes. J. Electroanal. Chem. 577, 93 2005Google Scholar
41Zhou, M., Chen, S., Ren, H., Wu, L.Zhao, S.: Electrochemical formation of platinum nanoparticles by a novel rotating cathode method. Physica E (Amsterdam) 27, 341 2005Google Scholar
42Tian, Z.Q., Jiang, S.P., Liang, Y.M.Shen, P.K.: Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel-cell applications. J. Phys. Chem. B 110, 5343 2006Google Scholar
43Song, Y., Jiang, Y-B., Wang, H., Pena, D.A., Qiu, Y., Miller, J.E.Shelnutt, J.A.: Platinum nanodendrites. Nanotechnology 17, 1300 2006Google Scholar
44Radmilović, V., Gasteiger, H.A., Ross, P.N. Jr.: Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J. Catal. 154, 98 1995Google Scholar
45Shu, F.R.Wilson, G.S.: Rotating ring-disk enzyme electrode for surface catalysis studies. Anal. Chem. 48, 1679 1976Google Scholar
46Zhou, H., Chen, H., Luo, S., Chen, J., Wei, W.Kuang, Y.: Glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline. Biosens. Bioelectron. 20, 1305 2005Google Scholar
47Delaney, P., Di Ventra, M.Pantelides, S.T.: Quantized conductance of multiwalled carbon nanotubes. Appl. Phys. Lett. 75, 3787 1999Google Scholar
48Frank, S., Poncharal, P., Wang, Z.L.de Heer, W.A.: Carbon nanotube quantum resistors. Science 280, 1744 1998Google Scholar
49Willner, I.Katz, E.: Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem., Int. Ed. Engl. 39, 1180 2000Google Scholar
50Ren, W., Reimers, J.R., Hush, N.S., Zhu, Y., Wang, J.Guo, H.: Models for the structure and electronic transmission of carbon nanotubes covalently linked by a molecular bridge via amide couplings. J. Phys. Chem. C 111, 3700 2007CrossRefGoogle Scholar