Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T16:07:40.607Z Has data issue: false hasContentIssue false

Electric properties of barium–strontium titanate thin films deposited by two-step radio-frequency sputtering

Published online by Cambridge University Press:  31 January 2011

J. S. Fang*
Affiliation:
Department of Materials Science and Engineering, National Huwei Institute of Technology, YunLin, 632, Taiwan, Republic of China
C. T. Chang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China
T. S. Chin
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China
*
a)Address all correspondence to this author.jsfang@sunws.nhit.edu.tw
Get access

Abstract

Barium-strontium titanate (BST) thin films were prepared by a two-step deposition using radio-frequency magnetron sputtering on Pt/Ti/SiO2-buffered Si(100) substrate. The initial BST layer thickness and intermediate annealing strongly affect the resultant electric properties of the two-step BST thin films. The optimal two-step BST films, with a first-layer thickness of 30 nm intermediate annealed at 610 °C under 1 torr oxygen. The dielectric breakdown and leakage current density of the two-step film are above 625 kV/cm and 9.5 nA/cm2 at 100 kV/cm, respectively, compared with 400 kV/cm and 17 nA/cm2 for the one-step films. We conclude that the two-step deposition dramatically improves dielectric breakdown and enhances leakage current density while keeping the dielectric constant uninfluenced.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Stannard, W.B., Johnston, P.N., Walker, S.R., Bubb, I.F., Scott, J.F., Cohen, D.D., Dytlewski, N., and Martin, J.W., Integr. Ferroelectr. 9, 243 (1995).CrossRefGoogle Scholar
2Hwang, C.S., Park, S.O., Kang, C.S., Cho, H.J., Kang, H.K., Ahn, S.T., and Lee, M.Y.. Jpn. J. Appl. Phys. 34, 157 (1995).Google Scholar
3Outzourhit, A., Naziripour, A., Trefny, J.U., Kito, T., Yarar, B., Yandrofski, R., Cuchiaro, J.D., and Hermann, A.M., Integr. Ferro-electr. 8, 227 (1995).CrossRefGoogle Scholar
4Tsai, M.S., Sun, S.C., and Tseng, T.Y., IEEE Trans. Electron Devices 46, 1829 (1999).CrossRefGoogle Scholar
5Tsai, M.S., and Tseng, T.Y., IEEE Trans. Electron Devices 23, 128 (2000).Google Scholar
6Dietz, G.W., Antpohler, W., Klee, M., and Waser, R., J. Appl. Phys. 78, 6113 (1995).CrossRefGoogle Scholar
7Joshi, P.C. and Krupanidhi, S.B., J. Appl. Phys. 78, 7627 (1993).CrossRefGoogle Scholar
8Hwang, C.S., Lee, B.T., park, S.O., Kim, J.W., Cho, H.J., Kang, C.S., Horii, H., Lee, S.I., and Lee, M.Y., Integr. Ferroelectr. 13, 157 (1996).CrossRefGoogle Scholar
9Knauss, L.A., Pond, J.M., Horwitz, J.S., Chrisey, D.B., Mueller, C.H., and Treece, R., Appl. Phys. Lett. 69, 25 (1966).CrossRefGoogle Scholar
10Chen, P.C., Miki., H.Shimamoto, Y., Matsui, Y., Hiratani, M., and Fujisaki, Y., Jpn. J. Appl. Phys. 37, 5112 (1998).CrossRefGoogle Scholar
11Shigemitsu, M., Takeshi, M., Takeharu, K., Noboru, M., Akihiko, T., Michihiko, N., Tasue, Y., and Takanori, K., Jpn, J. Appl. Phys., Part 2: Lett. 39, L416 (2000).Google Scholar
12Hwang, C.S. and Joo, S.H., J. Appl. Phys. 85, 2431 (1999).CrossRefGoogle Scholar
13Kawahara, T., Yamamuka, M., Yuki, A., and Ono, K., Jpn. J. Appl. Phys. 34, 5066 (1995).CrossRefGoogle Scholar
14Ahn, J.H., Lee, W.J., and Kim, H.G., Jpn. J. Appl. Phys. 37, 6472 (1998).CrossRefGoogle Scholar
15Horikawa, T., Mikami, N., Makita, T., Tanimura, J., and Kataoka, M., Jpn. J. Appl. Phys. 32, 4126 (1993).CrossRefGoogle Scholar
16Yoon, S.G. and Safari, A., Thin Solid Films 254, 211l (1995).CrossRefGoogle Scholar
17Joo, J.H., Sun, J.M., Jeon, Y.C., Oh, K.Y., Roh, J.S., and Kim, J.J., Appl. Phys. Lett. 70, 3053 (1997).CrossRefGoogle Scholar
18Hagenbeck, R. and Waser, R., J. Appl. Phys. 83, 2083 (1998).CrossRefGoogle Scholar
19Brown, W.D. and Grannemann, W.W., Solid State Electron. 21, 837 (1978).CrossRefGoogle Scholar
20Scott, J.F., Jpn. J. Appl. Phys. 38, 2272 (1999).CrossRefGoogle Scholar
21Blom, P.W.M., Wolf, R.M., Cilessen, J.F.M., and Krijn, M.P.C.M., Phys. Rev. Lett. 73, 2107 (1994).CrossRefGoogle Scholar
22Dey, S., Lee, J.J., and Alluri, P, Jpn. J. Appl. Phys. 34, 3142 (1995).CrossRefGoogle Scholar
23Fududa, Y., Aoke, K., Numata, K., and Nishimura, A., Jpn. J. Appl. Phys. 34, 5255 (1994).Google Scholar
24Orikawa, T., Makita, T., Kuroiwa, T., and Midami, N., Jpn. J. Appl. Phys. 34, 5478 (1995).CrossRefGoogle Scholar
25Abe, K. and Komatsu, S., Jpn. J. Appl. Phys. 31, 2985 (1992).Google Scholar
26Park, S.O., Hwang, C.S., Cho, H.J., Kang, C.S., Kang, H.K., Lee, S.I., and Lee, M.Y., Jpn. J. Appl. Phys. 35, 1548 (1996).CrossRefGoogle Scholar