Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:57:20.573Z Has data issue: false hasContentIssue false

Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites

Published online by Cambridge University Press:  31 January 2011

Ioana C. Finegan
Affiliation:
Materials and Processes Laboratory, General Motors R&D Center, 30500 Mound Road, Warren, Michigan 48090-9055
Gary G. Tibbetts
Affiliation:
Materials and Processes Laboratory, General Motors R&D Center, 30500 Mound Road, Warren, Michigan 48090-9055
Get access

Abstract

Conducting polymers are required for applications such as radio frequency interference shielding, primerless electrostatic painting, and static discharge. We have used vapor-grown carbon fiber (VGCF) as an additive to investigate conducting thermoplastics for these applications. The electrical properties of VGCF/polypropylene (PP) and VGCF/nylon composites are very attractive compared with those provided by other conventional conducting additives. Because of the low diameter of the VGCF used, the onset of conductivity (percolation threshold) can be below 3 vol%. Because of the highly conductive nature of the fibers, particularly after a graphitization step, the composites can reach resistivities as low as 0.15 Ω cm.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Miller, B., Plast. World, September, 73 (1996).Google Scholar
2.Dani, A. and Ogale, A.A., Compos. Sci. Technol. 56, 911 (1996).CrossRefGoogle Scholar
3.Ota, T., Fukushima, M., Ishigure, Y., Unuma, H., Takashi, T., Hikishi, Y., and Suzuki, H., J. Mater. Sci. Lett. 16, 1182 (1997).Google Scholar
4.Bigg, D.M., J. Rheol. 28, 501 (1984).CrossRefGoogle Scholar
5.Tibbetts, G.G., in Carbon Fibers Filaments and Composites, edited by Figueiredo, J.L., Bernardo, C.A., Baker, R.T.K., and Hüttinger, K.J. (Kluwer Academic, Dordrecht, The Netherlands, 1990), p. 73.CrossRefGoogle Scholar
6.Tibbetts, G.G., Bernardo, C.A., Gorkiewicz, D.W., and Alig, R.L., Carbon 32, 569 (1994).CrossRefGoogle Scholar
7.Gordeyev, S.A., Macedo, F.J., Ferreira, J.A., van Hattum, F.W.J., and Bernardo, C.A., Physica B 279, 33 (2000).CrossRefGoogle Scholar
8.Bernardo, C.A., Gordeyev, S.A., and Ferreira, J.A., in Carbon Fila-ments and Nanotubes: Common Origins, Differing Applications?, edited by Biro, L.P., Bernardo, C.A., Tibbetts, G.G., and Lambin, Ph. (Kluwer, Dordrecht, The Netherlands, 2001), p. 301.CrossRefGoogle Scholar
9.Pederson, T.C., Health and Environment Dept., GM R&D Center (private communication).Google Scholar
10.Tibbetts, G.G. and McHugh, J.J., J. Mater. Res. 14, 2871 (1999).CrossRefGoogle Scholar
11.Morelli, D.T. and Meng, W.J., Superlattice Microstruct. 8, 449 (1990).CrossRefGoogle Scholar
12.Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973).CrossRefGoogle Scholar
13.Heremans, J., Carbon 23, 431 (1985).CrossRefGoogle Scholar
14.Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L., and Goldberg, H.A., Graphite Fibers and Filaments (Springer, Berlin, 1988), p. 192.CrossRefGoogle Scholar
15.Langer, L. (private communication, April 28, 1993).CrossRefGoogle Scholar
16.Blythe, A.R., Electrical Properties of Polymers (Cambridge, London, U.K., 1979), p. 126.Google Scholar
17.Sichel, E.K., Gittleman, J.I., and Sheng, P., Phys. Rev. B 18, 5712 (1978).CrossRefGoogle Scholar
18.Achour, M.E., Malhi, M. El., and Carmona, F., J. Appl. Polym. Sci. 61, 2009 (1996).3.0.CO;2-3>CrossRefGoogle Scholar
19.Derengovski, T.M., Blais, E.J., and Helms, J.H., uSAE Int. Congr. Exposition, No. 980984, 179 (1998).Google Scholar
20.Wu, J. and McLahlan, D.S., Phys. Rev. B 56, 1236 (1997).CrossRefGoogle Scholar
21.Carcia, P.F., Ferretti, A., and Suna, A., J. Appl. Phys. 53, 5282 (1982).CrossRefGoogle Scholar