Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T14:45:07.606Z Has data issue: false hasContentIssue false

Electrical resistance of metallic contacts on silicon and germanium during indentation

Published online by Cambridge University Press:  31 January 2011

G.M. Pharr
Affiliation:
Department of Materials Science, Rice University, P.O. Box 1892, Houston, Texas 77251
W.C. Oliver
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
R.F. Cook
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598
P.D. Kirchner
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598
M.C. Kroll
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598
T.R. Dinger
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598
D.R. Clarke
Affiliation:
Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106
Get access

Abstract

The effects of indentation on the electrical resistance of rectifying gold-chromium contacts on silicon and germanium have been studied using nanoindentation techniques. The DC resistance of circuits consisting of positively and negatively biased contacts with silicon and germanium in the intervening gap was measured while indenting either directly in the gap or on the contacts. Previous experiments showed that a large decrease in resistance occurs when an indentation bridges a gap, which was used to support the notion that a transformation from the semiconducting to the metallic state occurs beneath the indenter. The experimental results reported here, however, show that a large portion of the resistance drop is due to decreases in the resistance of the metal-to-semiconductor interface rather than the bulk semiconductor. Experimental evidence supporting this is presented, and a simple explanation for the physical processes involved is developed which still relies on the concept of an indentation-induced, semiconducting-to-metallic phase transformation.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gupta, M.C. and Ruoff, A.L., J. Appl. Phys. 51, 1072 (1980).CrossRefGoogle Scholar
2.Duclos, S. C., Vohra, Y. K., and Ruoff, A. L., Phys. Rev. Lett. 58, 775 (1987).CrossRefGoogle Scholar
3.Olijnyk, H., Sikka, S. K., and Holzapfel, W. B., Phys. Lett. 103A, 137 (1984).CrossRefGoogle Scholar
4.Minomura, H. and Drickamer, H.G., J. Phys. Chem. Solids 23, 451 (1962).CrossRefGoogle Scholar
5.Hu, J.Z., Merkle, L.D., Menoni, C.S., and Spain, I.L., Phys. Rev. B 34, 4679 (1986).CrossRefGoogle Scholar
6.Qadri, S.B., Skelton, E.F., and Webb, A.W., J. Appl. Phys. 54, 3609 (1983).CrossRefGoogle Scholar
7.Shimomura, O., Minomura, S., Sakai, N., Asaumi, K., Tamura, K., Fukushima, J., and Endo, H., Philos. Mag. 29, 547 (1974).CrossRefGoogle Scholar
8.Gridneva, I.V., Milman, Yu. V., and Trefilov, V.I., Phys. Status Solidi (a) 14, 177 (1972).CrossRefGoogle Scholar
9.Danyluk, S., Kim, D.S., and Kalejs, J., J. Mater. Sci. Lett. 4, 1135 (1985).CrossRefGoogle Scholar
10.Clarke, D. R., Kroll, M. C., Kirchner, P. D., Cook, R. F., and Hockey, B. J., Phys. Rev. Lett. 21, 2156 (1988).CrossRefGoogle Scholar
11.Pharr, G.M., Oliver, W.C., and Clarke, D.R., J. Elec. Mater. 19, 881 (1990).CrossRefGoogle Scholar
12.Pharr, G. M., Oliver, W. C., and Clarke, D. R., Scripta Metall. 23, 1949 (1989).CrossRefGoogle Scholar
13.Sargent, P. M., “Factors Affecting Microhardness of Solids”, Ph.D. Dissertation, University of Cambridge (1981).Google Scholar
14.Gerk, A. P. and Tabor, D., Nature 271, 732 (1978).CrossRefGoogle Scholar
15.Tabor, D., Nature 273, 406 (1978).CrossRefGoogle Scholar
16.Roberts, S. G., Warren, P.D., and Hirsch, P.B., J. Mater. Res. 1, 162 (1986).CrossRefGoogle Scholar
17.Gilman, J. J., in The Science of Hardness Testing and Its Research Applications, edited by Westbrook, J. H. and Conrad, H. (American Society for Metals, Metals Park, OH, 1973), p. 54.Google Scholar
18.Pharr, G. M., Oliver, W. C., and Harding, D. S., J. Mater. Res. 6, 1129 (1991).CrossRefGoogle Scholar
19.Rideout, V. L. and Crowell, C. R., Appl. Phys. Lett. 10, 329 (1967).CrossRefGoogle Scholar
20.Pethica, J. B., Hutchings, R., and Oliver, W. C., Philos. Mag. A 48, 593 (1983).CrossRefGoogle Scholar
21.Oliver, W. C., Hutchings, R., and Pethica, J. B., in ASTM STP 889, edited by Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials, Philadelphia, PA, 1986), pp. 90108.Google Scholar
22.Stone, D., LaFontaine, W. R., Alexopoulos, P., Wu, T-W., and Li, Che-Yu, J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
23.Cook, R. F. and Pharr, G. M., J. Am. Ceram. Soc. 73, 787 (1990).CrossRefGoogle Scholar
24.Lankford, J. and Davidson, D.L., J. Mater. Sci. 14, 1662 (1979).CrossRefGoogle Scholar
25.Sata, T., Takamoto, K., and Yoshikawa, H., Bull. Jpn. Soc. Prec. Engrg. 3, 13 (1969).Google Scholar
26.Puttick, K. E., Shahid, M. A., and Hosseini, M. M., J. Phys. D 12, 195 (1979).Google Scholar
27.Langford, S.C., Doering, D.L., and Dickinson, J.T., Phys. Rev. Lett. 24, 2795 (1987).CrossRefGoogle Scholar