Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-30T22:51:09.581Z Has data issue: false hasContentIssue false

Energetics of oxidation of oxynitrides: Zr–N–O, Y–Zr–N–O, Ca–Zr–N–O, and Mg–Zr–N–O

Published online by Cambridge University Press:  31 January 2011

I. Molodetsky
Affiliation:
Department of Materials Science, University of Pennsylvania, 3133 Walnut Street, Philadelphia, Pennsylvania 19104
A. Navrotsky*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, One Shields Avenue, Davis, California 95616
F. DiSalvo
Affiliation:
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301
M. Lerch
Affiliation:
University of Würzburg, Lehrstuhl für Silicatchemie, Röntgenring 10-11, D-97070 Würzburg, Germany
*
a)Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

The enthalpies of oxidation, δHox, of oxynitrides YyZr1−yO2x−0.5y−2/3xNx (0.016 < x < 0.2), CayZr1−yO2xy−2/3xNx (0.03 < x < 0.14), MgyZr1−yO2xy−2/3xNx (0.146 < x < 0.28), and Zr–O–N (β-type and γ phases) are measured using drop solution calorimetry in molten sodium molybdate (3Na2O · 4MoO3) at 973 K. Linear relations between the enthalpy δHox and nitrogen content were found in all oxynitrides. They indicate that, within the experimental range of nitrogen concentrations, sites occupied by nitrogen ions are energetically equivalent in a given substitutional series. The enthalpies normalized per mole of nitrogen, δHnox, for compounds of Y–Zr–N–O, Ca–Zr–N–O, and Zr–N–O are similar, about −500 kJ/(mol of N). A more exothermic value of δHnox, of about −950 kJ/(mol of N), is seen in Mg–Zr–N–O compounds. The energetics of vacancy formation in zirconium oxynitrides was determined and compared to the energetics of vacancy formation in yttria- and calcia-stabilized zirconia. The enthalpy of vacancy formation (enthalpy of formation relative to end members normalized per vacancy) in zirconium oxynitrides (−190.5 ± 27.0 kJ/mol of Vö) is more exothermic than that in yttria- and calcia-stabilized zirconia (−105 ± 7.2 and −91.4 ± 3.8 kJ/mol of Vö, respectively). This is consistent with the higher tendency for long-range ordering in zirconium oxynitrides compared to stabilized zirconia. Some technological implications of the results are briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lerch, M., J. Am. Ceram. Soc. 10, 2641 (1996).CrossRefGoogle Scholar
2.Cheng, Y-B. and Thompson, D., J. Am. Ceram. Soc. 76(3), 683 (1993).CrossRefGoogle Scholar
3.Collongues, R., Gilles, J.C., Lejus, A.M., and Perez y Jorba, M., Mater. Res. Bull. 2, 837 (1967).CrossRefGoogle Scholar
4.Lerch, M., J. Mater. Sci. Lett. 17, 441 (1998).CrossRefGoogle Scholar
5.Boyd, I.W., Laser Processing of Thin Films and Microstructures (Springer Series in Materials Science, Berlin, Germany, 1987), Vol. 3.CrossRefGoogle Scholar
6.Ursu, I., Mihailescu, N., Nistor, L.C., and Teodorescu, V.S., J. Appl. Phys. 66, 3682 (1989).CrossRefGoogle Scholar
7.Prieto, P., Galan, L., and Sanz, J.M., Surf. Interface Anal. 21, 395 (1994).CrossRefGoogle Scholar
8.Meyer, R.T. and Nelson, L.S., High Temp. Sci. 2, 35 (1970).Google Scholar
9.Nelson, L.S., Rosner, D.E., Kurzius, S.C., and Levine, H.S., Twelfth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1968), pp. 5970.Google Scholar
10.Molodetsky, I.E., Dreizin, E.L., and Law, C.K., Twenty Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1996), pp. 19191927.Google Scholar
11.Rühle, M., Strecker, A., and Waidelich, D., in Science and Technology of Zirconia, edited by Clausses, N., Ruhle, M., and Heuer, A.H. (Advances in Ceramics, Vol. 12, II, Am. Ceram. Soc. Columbus, OH, 1984), pp. 256274.Google Scholar
12.Dutta, S. and Buzek, B., J. Am. Ceram. Soc. 67, 89 (1984).CrossRefGoogle Scholar
13.Stubican, V.S., Corman, G.S., Hellmann, J.R., and Senft, G., in Science and Technology of Zirconia, edited by Clausses, N., Ruhle, M., and Heuer, A.H. (Advances in Ceramics, Vol. 12, II, Am. Ceram. Soc. Columbus, OH, 1984), p. 96.Google Scholar
14.Badwal, S.P.S, Solid State Ionics 8, 23 (1992).CrossRefGoogle Scholar
15.Lerch, M. and Rahauser, O., J. Mater. Sci. 32, 1357 (1997).CrossRefGoogle Scholar
16.Lange, F.F., Falk, L.K.L, and Davis, B.I., J. Mater. Res. 2, 66 (1987).CrossRefGoogle Scholar
17.Yin, Y., Bryant, A.W., and Argent, B.B., Mater. Sci. Technol. 12, 117 (1996).CrossRefGoogle Scholar
18.Molodetsky, I., Navrotsky, A., Lajavardi, M., and Brune, A., Z. Phys. Chem. 207, 59 (1998).CrossRefGoogle Scholar
19.Navrotsky, A., Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
20.Lerch, M., Lerch, J., Hock, J.R., and Wrba, J., J. Solid State Chem. 128, 282 (1997).CrossRefGoogle Scholar
21.Ohashi, M., Yamamoto, H., Yamanaka, S., and Hatori, M., Mater. Res. Bull. 28, 513 (1993).CrossRefGoogle Scholar
22.Ohashi, M., Yamanaka, S., and Hattori, M., J. Solid State Chem. 77, 342 (1988).CrossRefGoogle Scholar
23.Ohashi, M., Yamanaka, S., Sumihara, M., and Hattori, M., J. Solid State Chem. 75, 99 (1988).CrossRefGoogle Scholar
24.Garvie, R.C. and Nicholson, P.S., J. Am. Ceram. Soc. 55, 303 (1972).CrossRefGoogle Scholar
25.McHale, J.M., Kowach, G.R., Navrotsky, A., and DiSalvo, F.J., Chem. Eur. J. 2, 1514 (1996).CrossRefGoogle Scholar
26.Cain, M.G. and Lewis, M.H., J. Am. Ceram. Soc. 76, 6 (1993).CrossRefGoogle Scholar
27.Chase, M.W. and Davies, C.A., JANAF thermochemical tables, 3rd ed., J. Phys. Chem. Ref. Data (1985).Google Scholar
28.Barin, I. and Knacke, O., Thermochemical properties of inorganic substances (Springer-Verlag, Berlin, Germany/Heidelberg, Germany/New York, 1973).Google Scholar
29.Takayama-Muromachi, E. and Navrotsky, A., J. Solid State Chem. 72, 244 (1988).CrossRefGoogle Scholar
30.Liang, J-J., Navrotsky, A., Ludwig, T., Seifert, H.J., and Aldinger, F., J. Mater. Res. 14, 4 (1999).Google Scholar
31.Lerch, M., Füglein, E., and Wrba, J., Z. Anorg. Allg. Chem. 622, 367 (1996).CrossRefGoogle Scholar
32.Molodetsky, I., Ph.D. Thesis, Princeton University (1999).Google Scholar
33.Catlow, C.R.A, Chadwick, A.V., Greaves, G.N., and Moroney, L.M., J. Am. Ceram. Soc. 69, 272 (1986).CrossRefGoogle Scholar
34.Li, P., Chen, J., and Penner-Hahn, J., J. Am. Ceram. Soc. 77, 118 (1994).CrossRefGoogle Scholar
35.Scott, H.G., Acta Crystallogr. B 33, 281 (1977).CrossRefGoogle Scholar
36.Thornber, M.R., Bevan, D.J.M, and Graham, J., Acta Crystallogr. B 24, 1183 (1968).CrossRefGoogle Scholar
37.Pauling, L., The Nature of the Chemical Bond, 3rd ed. (Cornell University, Ithaca, NY, 1960).Google Scholar
38.Cho, D.H., Armstrong, D.R., and Anderson, R.P., Nucl. Eng. Des. 155, 405 (1995).CrossRefGoogle Scholar
39.Dreizin, E.L., Prog. Energy Combust. Sci. 26, 5778 (2000).CrossRefGoogle Scholar