Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T06:55:27.785Z Has data issue: false hasContentIssue false

Enhanced electrocaloric effect in compositional driven potassium sodium niobate-based relaxor ferroelectrics

Published online by Cambridge University Press:  16 October 2020

Nan Zhang
Affiliation:
Department of Materials Science, Sichuan University, Chengdu610065, China
Ting Zheng
Affiliation:
Department of Materials Science, Sichuan University, Chengdu610065, China
Chunlin Zhao
Affiliation:
Department of Materials Science, Sichuan University, Chengdu610065, China
Xiaowei Wei
Affiliation:
Department of Materials Science, Sichuan University, Chengdu610065, China
Jiagang Wu*
Affiliation:
Department of Materials Science, Sichuan University, Chengdu610065, China
*
a)Address all correspondence to this author. e-mail: wujiagang0208@163.com
Get access

Abstract

Lead-free ferroelectric electrocaloric ceramics that could convert electrical energy into heat are the promising candidate for environment-friendly cooling devices. For refrigeration devices, a large temperature change (ΔT) and good temperature stability are required, which are highly related to the phase structure and the applied electric field. In this work, a diffused ferroelectric–paraelectric (FP) phase transition is formed in (K, Na)NbO3 (KNN) by using appropriate composition engineering. The relaxor ferroelectrics in this work present both a large ΔT of 1.24 K and a high ΔTE of 0.19 K mm/kV. In addition, a wide temperature span exceeds 55 °C at the high electrocaloric effect (ECE) criterion (ΔT ≥ 0.5 K) could also be observed. This work not only opens a new strategy for obtaining high-performance ceramics for refrigeration devices but also extends the application area of the KNN-based lead-free ferroelectrics from sensors, actuators and energy harvesting to solid-state cooling applications.

Type
Invited Paper
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, G., Chen, Z., Fan, B., Liu, J, Chen, M., Shen, M, Liu, P., Zeng, Y., Jiang, S., and Wang, Q.: Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing. APL Mater. 4, 064103 (2016).CrossRefGoogle Scholar
Fähler, S. and Pecharsky, V.K.: Caloric effects in ferroic materials. MRS Bull. 43, 264 (2018).CrossRefGoogle Scholar
Wang, J. J., Fortino, D., Wang, B., Zhao, X., and Chen, L.Q.: Extraordinarily large electrocaloric strength of metal-free perovskites. Adv. Mater. 32, 1906224 (2020).CrossRefGoogle ScholarPubMed
Moya, X., Narayan, S.K., and Mathur, N.D.: Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439 (2014).CrossRefGoogle ScholarPubMed
Mischenko, A., Zhang, Q., Scott, J.F., Whatmore, R.W., and Mathur, N.D.: Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270 (2006).CrossRefGoogle Scholar
Yu, Y., Gao, F., Weyland, F., Du, H., Jin, L., Hou, L., Yang, Z., Novak, N., and Qu, S.: Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics. J. Mater. Chem. A 7, 11665 (2019).CrossRefGoogle Scholar
Koruza, J., Roži, B., Cordoyiannis, G., Malič, B., and Kutnjak, Z.: Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics. Appl. Phys. Lett. 106, 202905 (2015).CrossRefGoogle Scholar
Zhao, C., Huang, Y., and Wu, J.: Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat (2020). doi:10.1002/inf2.12147.CrossRefGoogle Scholar
Zuo, R. and Fu, J.: Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. J. Am. Ceram. Soc. 94, 1467 (2011).CrossRefGoogle Scholar
Tao, H., Wu, H., Liu, Y., Zhang, Y., Wu, J., Li, F., Lyu, X., Zhao, C., Xiao, D., Zhu, J., and Pennycook, S.J.: Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 141, 13987 (2019).CrossRefGoogle ScholarPubMed
Zhao, L., Ke, X., Zhou, Z., Liao, X., Li, J., Wang, Y., Wu, M., Li, T., Bai, Y., and Ren, X.: Large electrocaloric effect over a wide temperature range in BaTiO3-modified lead-free ceramics. J. Mater. Chem. C 7, 1353 (2019).CrossRefGoogle Scholar
Wang, X., Wu, J., Dkhil, B., Xu, B., Wang, X., Dong, G., Yang, G., and Lou, X.: Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl. Phys. Lett. 110, 063904 (2017).CrossRefGoogle Scholar
Kumar, R. and Singh, S.: Enhanced electrocaloric response and high energy-storage properties in lead-free (1-x)(K0.5Na0.5)NbO3-xSrZrO3 nanocrystalline ceramics. J. Alloys Compd. 764, 289 (2018).CrossRefGoogle Scholar
Yang, J., Zhao, Y., Lou, X., Wu, J., and Hao, X.: Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary. J. Mater. Chem. C 8, 4030 (2020).CrossRefGoogle Scholar
Wu, J., Xiao, D., and Zhu, J.: Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).CrossRefGoogle ScholarPubMed
Li, Y., Zhen, Y., Wang, W., Fang, Z., Jia, Z., Zhang, J., Zhong, H., Wu, J., Yan, Y., Xue, Q., and Zhu, F.: Enhanced energy storage density and discharge efficiency in potassium sodium niobite-based ceramics prepared using a new scheme. J. Eur. Ceram. Soc. 40, 2357 (2020).CrossRefGoogle Scholar
Lv, X. and Wu, J.: Effects of a phase engineering strategy on the strain properties in KNN-based ceramics. J. Mater. Chem. C 7, 2037 (2019).CrossRefGoogle Scholar
Wu, B., Zhao, C., Huang, Y., Yin, J., Wu, W., and Wu, J.: Superior electrostrictive effect in relaxor potassium sodium niobate based ferroelectrics. ACS Appl. Mater. Interfaces 12, 25050 (2020).CrossRefGoogle ScholarPubMed
Li, X., Lu, S.G., Chen, X.Z., Gu, H., Qian, X., and Zhang, Q.M.: Pyroelectric and electrocaloric materials. J. Mater. Chem. C 1, 23 (2013).CrossRefGoogle Scholar
Vats, G., Kumar, A., Ortega, N., Bowen, C.R., and Katiyar, R.S.: Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures. Energ. Environ. Sci. 9, 1335 (2016).CrossRefGoogle Scholar
Guo, M., Wu, M., Gao, W., Sun, B., and Lou, X.: Giant negative electrocaloric effect in antiferroelectric PbZrO3 thin films in an ultra-low temperature range. J. Mater. Chem. C 7, 617 (2019).CrossRefGoogle Scholar
Valant, M.: Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980 (2012).CrossRefGoogle Scholar
Zhao, C., Yang, J., Huang, Y., Hao, X., and Wu, J.: Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions. J. Mater. Chem. A 7, 25526 (2019).CrossRefGoogle Scholar
Li, E., Kakemoto, H., Wada, S., and Tsurumi, T.: Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J. Am. Ceram. Soc. 90, 1787 (2007).CrossRefGoogle Scholar
Lim, J.B., Zhang, S., Jeon, J.H., and Shrout, T.R.: (K,Na)NbO3-based ceramics for piezoelectric “hard” lead-free materials. J. Am. Ceram. Soc. 93, 1218 (2010).CrossRefGoogle Scholar
Park, H.Y., Choi, J.Y., Choi, M.K., Cho, K.H., Nahm, S., Lee, H.G., and Kang, H.W.: Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91, 2374 (2008).CrossRefGoogle Scholar
Chang, Y., Poterala, S.F., Yang, Z., McKinstry, S.T., and Messing, G.L.: Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth. J. Mater. Res. 25, 687 (2011).CrossRefGoogle Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976).CrossRefGoogle Scholar
Lv, X., Zhu, J., Xiao, D., Zhang, X., and Wu, J.: Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem. Soc. Rev. 49, 671 (2020).CrossRefGoogle ScholarPubMed
Huang, Y., Zhao, C., Yin, J., Lv, X., Ma, J., and Wu, J.: Giant electrostrictive effect in lead-free barium titanate-based ceramics via A-site ion-pairs engineering. J. Mater. Chem. A 7, 17366 (2019).CrossRefGoogle Scholar
Xing, J., Xie, S., Wu, B., Tan, Z., Jiang, L., Xie, L., Cheng, Y., Wu, J., Xiao, D., and Zhu, J.: Influence of different lanthanide ions on the structure and properties of potassium sodium niobate based ceramics. Scr. Mater. 177, 186 (2020).CrossRefGoogle Scholar
Ren, X., Peng, Z., Chen, B., Shi, Q., Qiao, X., Wu, D., Li, G., Jin, L., Yang, Z., and Chao, X.: A compromise between piezoelectricity and transparency in KNN-based ceramics: The dual functions of Li2O addition. J. Eur. Ceram. Soc. 40, 2331 (2020).CrossRefGoogle Scholar
Huang, F., Tian, H., Meng, X., Tan, P., Cao, X., Bai, Y., Hu, C., and Zhou, Z.: Large room temperature electrocaloric effect in KTa1-xNbxO3 single crystal. Phys. Status Solidi RRL 13, 1800515 (2019).CrossRefGoogle Scholar
Li, J., Bai, Y., Qin, S., Fu, J., Zuo, R., and Qiao, L.: Direct and indirect characterization of electrocaloric effect in (Na,K)NbO3 based lead-free ceramics. Appl. Phys. Lett. 109, 162902 (2016).CrossRefGoogle Scholar
Zhang, L., Zhao, C., Zheng, T., and Wu, J.: Large electrocaloric effect in (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics. ACS Appl. Mater. Interfaces 12, 33934 (2020).CrossRefGoogle Scholar
Goupil, F.L., Axelsson, A.K., Dunne, L.J., Valant, M., Manos, G., Lukasiewicz, T., Dec, J., Berenov, A., and Alford, N.M.: Anisotropy of the electrocaloric effect in lead-free relaxor ferroelectrics. Adv. Energ. Mater. 4, 1301688 (2014).CrossRefGoogle Scholar
Sanlialp, M., Shvartsman, V.V., Acosta, M., Dkhil, B., and Lupascu, D.C.: Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements. Appl. Phys. Lett. 106, 062901 (2015).CrossRefGoogle Scholar
Kumar, R., Kumar, A., and Singh, S.: Large electrocaloric response and energy storage study in environmentally friendly (1-x)K0.5Na0.5NbO3-xLaNbO3 nanocrystalline ceramics. Sustain. Energ. Fuels 2, 2698 (2018).CrossRefGoogle Scholar
Kumar, R., Kumar, A., and Singh, S.: Coexistence of large negative and positive electrocaloric effects and energy storage performance in LiNbO3 doped K0.5Na0.5NbO3 nanocrystalline ceramics. ACS App. Electron. Mater. 1, 454 (2019).CrossRefGoogle Scholar
Kumar, S. and Singh, S.: Study of electrocaloric effect in lead-free 0.9K0.5Na0.5NbO3-0.1CaZrO3 solid solution ceramics. J. Mater. Sci.: Mater. Electron. 30, 12924 (2019).Google Scholar
Yang, J. and Hao, X.: Electrocaloric effect and pyroelectric performance in (K,Na)NbO3-based lead-free ceramics. J. Am. Ceram. Soc. 102, 6817 (2019).CrossRefGoogle Scholar
Pilgrim, S.M., Sutherland, A.E., and Winzer, S.R.: Diffuseness as a useful parameter for relaxor ceramics. J. Am. Ceram. Soc. 73, 3122 (1990).CrossRefGoogle Scholar
Huang, Y., Zhao, C., Wu, B., and Wu, J.: Multifunctional BaTiO3-based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS Appl. Mater. Interfaces 12, 23885 (2020).CrossRefGoogle ScholarPubMed