Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T16:35:07.407Z Has data issue: false hasContentIssue false

Epitaxial growth of antiperovskite GaCMn3 film on perovskite LaAlO3 substrate

Published online by Cambridge University Press:  31 January 2011

H. S. Choi
Affiliation:
Center for CMR Materials, Korea Research Institute of Standards and Science, P.O. 102 Yusong, Taejon 305–600, Korea
W. S. Kim
Affiliation:
Center for CMR Materials, Korea Research Institute of Standards and Science, P.O. 102 Yusong, Taejon 305–600, Korea
J. C. Kim
Affiliation:
Center for CMR Materials, Korea Research Institute of Standards and Science, P.O. 102 Yusong, Taejon 305–600, Korea
N. H. Hur
Affiliation:
Center for CMR Materials, Korea Research Institute of Standards and Science, P.O. 102 Yusong, Taejon 305–600, Korea
Get access

Abstract

We report on the magnetic and transport properties of the antiperovskite GaCMn3 film epitaxially grown on LaAlO3 using the pulsed laser deposition technique. Upon cooling from room temperature, the GaCMn3 film undergoes magnetic transitions from paramagnetic to ferromagnetic to antiferromagnetic. The Curie and Neél temperatures of the film shift to lower and higher temperatures, respectively, by comparison with those of the bulk sample. This discrepancy is mainly ascribed to the compressive strain effect induced by the lattice-mismatch between film and substrate. Negative magnetoresistance, which is about 20% at 0.5 T, is observed near the Neél temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Helmolt, R. von, Wecker, J., Holzapfel, B., Schultz, M., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).CrossRefGoogle Scholar
2.Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264, 413 (1994).CrossRefGoogle Scholar
3.Ahn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, Ø., and Triscone, J.M., Science 276, 1100 (1996).CrossRefGoogle Scholar
4.Prinz, G.A., Science 282, 1660 (1998).CrossRefGoogle Scholar
5.Mathews, S., Ramesh, R., Venkatesan, T., and Benedetto, J., Science 276, 238 (1997).CrossRefGoogle Scholar
6.Kim, W.S., Chi, E.O., Kim, J.C., Choi, H.S., and Hur, N.H., Solid State Commun. 119, 507 (2001).CrossRefGoogle Scholar
7.Kuwahra, H., Tomioka, Y., Moritomo, Y., Asamitsu, A., Kasai, M., Kumai, R., and Tokura, Y., Science 272, 80 (1996).CrossRefGoogle Scholar
8.Nam, B.C., Kim, W.S., Choi, H.S., Kim, J.C., Hur, N.H., Kim, I.S., and Park, Y.K., J. Phys. D: Appl. Phys. 34, 54 (2001).CrossRefGoogle Scholar
9.Bouchaud, J.P., Fruchart, R., Pauthenet, R., Guillot, M., Bartholin, H., and Chaisse´, F., J. Appl. Phys. 37, 971 (1966).CrossRefGoogle Scholar
10.Kamishima, K., Goto, T., Nakagawa, H., Miura, N., Ohashi, M., Mori, N., Sasaki, T., and Kanomata, T., Phys. Rev. B 63, 024426 (2001).CrossRefGoogle Scholar
11.Almeida, B.G., Amaral, V.S., Sousa, J.B., Colio, J., Schuller, I.K., Schad, R., Moschalkov, V.V., and Bruynseraede, Y., J. Appl. Phys. 81, 5194 (1997).CrossRefGoogle Scholar
12.Choi, H.S., Kim, W.S., Nam, B.C., and Hur, N.H., Appl. Phys. Lett. 78, 353 (2001).CrossRefGoogle Scholar
13.Kimura, T., Asamitsu, A., Tomioka, Y., and Tokura, Y., Phys. Rev. Lett. 79, 3720 (1997).CrossRefGoogle Scholar