Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T06:18:16.006Z Has data issue: false hasContentIssue false

Epitaxial growth of semiconducting LaVO3 thin films

Published online by Cambridge University Press:  31 January 2011

Woong Choi
Affiliation:
Department of Materials Science & Mineral Engineering, University of California, Berkeley, California 94720
Timothy Sands
Affiliation:
Department of Materials Science & Mineral Engineering, University of California, Berkeley, California 94720
Kwang-Young Kim
Affiliation:
Display R&D Center, LG Electronics, 16 Woomyeon-Dong, Seocho-Gu, Seoul 137-724, Korea
Get access

Extract

Epitaxial thin films of LaVO3 were grown on (001) LaAlO3 substrates by pulsed laser deposition from a LaVO4 target in a vacuum ambient at substrate temperatures ≥500 °C. X-ray diffraction studies showed that epitaxial LaVO3 films consist of mixed domains of [110] and [001] orientations. Thermoprobe and four-probe conductivity measurements demonstrated the p-type semiconducting behavior of the epitaxial LaVO3 films. The temperature dependence of the conductivity is consistent with a thermally activated hopping mechanism with an activation barrier of 0.16 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ramesh, R., Inam, A., Chan, W., Wilkens, B., Myers, K., Remschning, K., Hart, D., and Tarascon, J., Science 252, 944 (1991).CrossRefGoogle Scholar
2.Eom, C., Cava, R., Fleming, R., Phillips, J., van Dover, R., Marshall, J., Hsu, J., Krajewski, J., and Peck, W. Jr., Science 258, 1766 (1992).CrossRefGoogle Scholar
3.Cheung, J., Morgan, P., Lowndes, D., Zheng, X., and Breen, J., Appl. Phys. Lett. 62, 2045 (1993).CrossRefGoogle Scholar
4.Evans, J. Jr., Suizu, R., and Boyer, L., Appl. Surf. Sci. 117/118, 413 (1997).CrossRefGoogle Scholar
5.Mathews, S., Ramesh, R., Venkatesan, T., and Benedetto, J., Science 276, 238 (1997).CrossRefGoogle Scholar
6.Giesbers, J., Prins, M., Cillessen, J., and H. van Esch, Microelectron. Eng. 35, 71 (1997).CrossRefGoogle Scholar
7.Bordet, P., Chaillout, C., Marezio, M., Huang, Q., Santoro, A., Cheong, S., Takagi, H., Oglesby, C., and Batlogg, B., J. Solid State Chem. 106, 253 (1993).CrossRefGoogle Scholar
8.Arima, T., Tokura, Y., and Torrance, J., Phys. Rev. B 48, 17006 (1993).CrossRefGoogle Scholar
9.Reuter, B. and Wollnik, M., Naturwissenschaften 50, 569 (1963).CrossRefGoogle Scholar
10.Rogers, D., Ferretti, A., Ridgley, D., Arnott, R., and Goodenough, J., J. Appl. Phys. 37, 1431 (1966).CrossRefGoogle Scholar
11.Dougier, P. and Hagenmuller, P., J. Solid State Chem. 11, 177 (1974).CrossRefGoogle Scholar
12.Webb, J. and Sayer, M., J. Phys. C: Solid State Phys. 9, 4151 (1976).CrossRefGoogle Scholar
13.Dougier, P. and Casalot, A., J. Solid State Chem. 2, 396 (1970).CrossRefGoogle Scholar
14.Nakamura, T., Petzow, G., and Gauckler, L., Mater. Res. Bull. 14, 649 (1979).CrossRefGoogle Scholar
15.Lu, P., Chu, F., Jia, Q., and Mitchell, T., J. Mater. Res. 13, 2302 (1998).CrossRefGoogle Scholar