Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T16:58:05.208Z Has data issue: false hasContentIssue false

Equilibrium tie-line in PrOy–BaO–CuO ternary phase diagram around peritectic temperature of Pr1+xBa2−xCu3O7−δ

Published online by Cambridge University Press:  31 January 2011

Minoru Tagami
Affiliation:
SRL-ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
Makoto Kambara
Affiliation:
Department of Metallurgy, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Takateru Umeda
Affiliation:
Department of Metallurgy, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Yuh Shiohara
Affiliation:
SRL-ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135, Japan
Get access

Extract

This paper presents tie-lines between Pr1+xBa2−xCu3O7−δ and liquid on a PrOy –BaO–CuO ternary phase diagram at 965, 970, 975, 980, and 990 °C in air atmosphere, for which knowledge is necessary to fabricate composition controlled Pr1+xBa2−xCu3O7−δ single crystals by the solution growth method. Liquidus faces have been investigated by dipping MgO single crystal rods into the thermal equilibrium melt at various temperatures and analyzing the composition of the adhering melt by ICP. The compositions of Pr1+xBa2−xCu3O7−δ solid solution coexisting with various compositions of liquids were obtained by quantitative EPMA analysis of quenched melts. Tie-lines were calculated by applying the lever rule to these experimental data for solid compositions and liquidus faces. Furthermore, the relationships between solid solubilities and peritectic temperatures of Pr1+xBa2−xCu3O7−δ are reported.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schneemeyer, L. F., Waszczak, J. V., Zahorak, S. M., van Dover, R. B., and Siegrist, T., Mater. Res. Bull. 22, 1467 (1987).CrossRefGoogle Scholar
2.Yamada, T., Kinosita, K., Matsuda, A., Watanabe, T., and Asano, Y., Jpn. J. Appl. Phys. 26, L633 (1987).CrossRefGoogle Scholar
3.Murphy, D. W., Sunshine, S., van Dover, R. B., Cava, R. J., Batlogg, B., Zahurak, M., and Schneemeyer, L. F., Phys. Rev. Lett. 58, 1888 (1987).CrossRefGoogle Scholar
4.Hor, P. H., Meng, R. L., Wang, Y. Q., Gao, L., Huang, Z. J., Bechtold, J., Forster, K., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
5.Brown, S. E., Thompson, J. D., Willis, J. Q., Aiken, R. M., Zirgniebl, E., Smith, J. L., Fisk, Z., and Schwarz, R. B., Phys. Rev. B 36, 2298 (1987).CrossRefGoogle Scholar
6.Tarascon, J. M., Mckinnon, W. R., Green, L. H., Hull, G. W., and Vogel, E. M., Phys. Rev. B 36, 226 (1987).CrossRefGoogle Scholar
7.Maple, M. B., Dalichaouch, Y., Ferreira, J. M., Hake, R. R., Lee, B. W., Neumeier, J. J., Torikachvili, M. S., Yang, K. N., Zhou, H., Guertin, R. P., and Kuric, M. V., Physica B + C 148, 155 (1987).CrossRefGoogle Scholar
8.Zou, Z., Oka, K., Ito, T., and Nishihara, Y., Proc. Int. Symp. Supercond. (ISS'96).Google Scholar
9.Soderholm, L., Zhang, K., Hinks, D. G., Beno, M. A., Jorgensen, J. D., Segre, C. U., and Schuller, Ivan K., Nature 328, 604 (1987).CrossRefGoogle Scholar
10.Goncalves, A. P., Santos, I. C., Lopes, E. B., Henriques, R. T., Almeida, M., and Figueiredo, M. O., Phys. Rev. B 37, 7476 (1988).CrossRefGoogle Scholar
11.Kinoshita, K., Matsuda, A., Shibata, H., Ishii, T., Watanabe, T., and Yamada, T., Jpn. J. Appl. Phys. 27, L1642 (1988).CrossRefGoogle Scholar
12.Matsuda, A., Kinoshita, K., Ishii, T., Shibata, H., Watanabe, T., and Yamada, T., Phys. Rev. B 38, 2910 (1988).CrossRefGoogle Scholar
13.Neukirch, U., Simmons, C. T., Sladeczek, P., Laubschat, C., Streble, O., Kaindle, G., and Sarma, D. D., Europhys. Lett. 5, 567 (1988).CrossRefGoogle Scholar
14.Guillaume, M., Allenspach, P., Henggeler, W., Roessli, M. J. B., Fischer, S. U. P., Furrer, A., and Trounov, V., J. Phys.: Condens. Matter. 6, 7963 (1994).Google Scholar
15.Oka, K., Nakane, K., Ito, M., Saito, M., and Unoki, H., Jpn. J. Appl. Phys. 27, L1065 (1988).CrossRefGoogle Scholar
16.Lee, B-J. and Lee, D. N., J. Am. Ceram. Soc. 72, 314319 (1989).CrossRefGoogle Scholar
17.Maeda, M., Kadoi, M., and Ikeda, T., Jpn. J. Appl. Phys. 28, 1417 (1989).CrossRefGoogle Scholar
18.Lee, B-J. and Lee, D. N., J. Am. Ceram. Soc. 74, 78 (1991).CrossRefGoogle Scholar
19.Zhang, W. and Osamura, K., Z. Metallkde. 81, 196 (1990).Google Scholar
20.Karpinsky, J., Schwer, H., Conder, K., Jilek, E., Kaldis, E., Rossel, C., Lang, H. P., and Baumann, T., Appl. Supercond. 1, 333 (1993).CrossRefGoogle Scholar
21.Wong-Ng, W., Paretzkin, B., and Fuller, E. R. Jr., J. Solid State Chem. 85, 117 (1990).CrossRefGoogle Scholar
22.Osamura, K. and Zhang, W., Z. Metallkde. 84, 8 (1993).Google Scholar
23.Krauns, Ch., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B 96, 207 (1994).CrossRefGoogle Scholar
24.Hodorowicz, S. A., Czerwonka, J., and Eick, H. A., J. Solid State Chem. 88, 391 (1990).CrossRefGoogle Scholar
25.Tsuzuki, A., Yosida, M., Nakamoto, T., and Hirabayashi, I., Proceedings of the 6th International Symposium on Superconductivity (ISS'93), 1, 323 (1993).Google Scholar
26.Park, M., Kramer, M. J., Dennis, K. W., and McCallum, R. W., Physica C 259, 43 (1996).CrossRefGoogle Scholar
27.Tagami, M. and Shiohara, Y., Cryst. Growth, J., in press.Google Scholar
28.Sumida, M., Tagami, M., Krauns, Ch., Shiohara, Y., and Umeda, T., Physica C 249, 47 (1995).CrossRefGoogle Scholar