Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T03:12:30.610Z Has data issue: false hasContentIssue false

Evolution of crystalline zirconia structure in heat-treated ceria stabilized zirconia gels

Published online by Cambridge University Press:  31 January 2011

V.S. Nagarajan
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012, India
K.J. Rao*
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore-560 012, India
*
a)Address correspondence to this author.
Get access

Abstract

Transformation characteristics of CeO2 stabilized ZrO2 gels have been studied during heating in the temperature region 1273–1473 K. The nature of the major phase present changes drastically in this temperature region. The crystallite sizes of tetragonal and monoclinic ZrO2 crystallites have been calculated by x-ray line broadening. The change in the nature of the major phase observed during heat treatment seems to be related to the presence of a barrier for transformation from a metastable to a stable regime, which in turn appears to be related to the diffusion barriers of Ce4+ in ZrO2.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Subba Rao, E. C., in Advances in Ceramics (The American Ceramic Society, Westerville, OH, 1981), Vol. 3, p. 1.Google Scholar
2.Garvie, R. C., Hannink, R. H., and Pascoe, R. T., Nature 258, 703 (1975).CrossRefGoogle Scholar
3.Porter, D. L. and Heuer, A. H., J. Am. Ceram. Soc. 60, 183 (1977).CrossRefGoogle Scholar
4.Fehrenbacher, L. L., Jacobson, L. A., and Lynch, C. T., in Rare Earth Research III, edited by Eyring, L. (Science Publishers, New York, 1965), p. 687.Google Scholar
5.Duh, J. G. and Lee, M. Y., J. Mater. Sci. 24, 4467 (1987).Google Scholar
6.Yoldas, B. E., J. Am. Ceram. Soc. 65, 387 (1982).CrossRefGoogle Scholar
7.Heuer, A. H., J. Am. Ceram. Soc. 70, 689 (1987).CrossRefGoogle Scholar
8.Nagarajan, V. S. and Rao, K. J., J. Mater. Sci. 24, 2140 (1989).Google Scholar
9.Garvie, R. C., in Adv. Ceram. 24, 55 (1988).Google Scholar
10.Schubert, H. and Petzow, G., in Adv. Ceram. 24, 21 (1988).Google Scholar
11.Heuer, A. H., Claussen, N., Kriven, W. M., and Ruhle, M., J. Am. Ceram. Soc. 65, 642 (1982).CrossRefGoogle Scholar
12.Yoshimura, M., Ceram. Bull. 67, 1950 (1988).Google Scholar
13.Livage, J., Doi, K., and Mazieres, C., J. Am. Ceram. Soc. 51, 349 (1968).Google Scholar
14.Mazdiyasni, K. S., Lynch, C. T., and Smith, J. S., J. Am. Ceram. Soc. 49, 283 (1966).Google Scholar
15.Garvie, R. C., J. Phys. Chem. 69, 1238 (1965).Google Scholar
16.Tani, E., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 66, 11 (1983).CrossRefGoogle Scholar
17.Itoh, T., J. Mater. Sci. Lett. 4, 1029 (1985).Google Scholar
18.Denkewicz, R. P., Jr., TenHuisen, K. S., and Adair, J. H., J. Mater. Res. 5, 2698 (1990).CrossRefGoogle Scholar
19.Scherrer, P., Gotting. Nachr. 2, 98 (1918).Google Scholar
20.Tredway, W. K. and Risbud, S. H., J. Non-Cryst. Solids 100, 278 (1988).CrossRefGoogle Scholar
21.Meriani, S., Mater. Sci. Engg. A 109, 121 (1989).CrossRefGoogle Scholar
22.Nagarajan, V. S. and Rao, K. J., J. Solid State Chem. 88, 419 (1990).CrossRefGoogle Scholar
23.Nagarajan, V. S. and Rao, K. J., J. Solid State Chem. (1991; in press).Google Scholar