Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T22:12:54.290Z Has data issue: false hasContentIssue false

Excimer laser ablation of aluminum nitride

Published online by Cambridge University Press:  31 January 2011

Janet K. Lumpp
Affiliation:
Department of Electrical Engineering, University of Kentucky, Lexington, Kentucky 40506–0046
Susan D. Allen
Affiliation:
Departments of Chemistry and Electrical Engineering, Florida State University, Tallahassee, Florida 32306–4093
Get access

Abstract

Excimer laser wavelengths ablate aluminum nitride at rates up to 0.2 μm/pulse where the rate increases with decreasing background pressure and increasing fluence. The ablation threshold for AlN at 248 nm is approximately 2 J/cm2. Blind vias are produced with flat bottoms, straight walls, and a decomposed metallic layer remaining on the surface. Ablation rate dependence on fluence saturates at high fluences due to absorption by the ablation plume. The influence of processing variables on ablation rate and ablation mechanisms are discussed. Statistical design of experiments is used to compare data sets.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Marchant, D. D. and Nemeck, T. E., “Aluminum Nitride: Preparation, Processing, and Properties,” Advances in Ceramics, edited by Yan, M. F., Niwa, K., O'Brien, H. M., and Young, W. S. (ACerS, Inc. Westerville, OH, 1989), Vol. 26.Google Scholar
2.Yim, W. M., Stofko, E. J., Zanzuchi, P. J., Pankove, J. I., Ettenberg, M., and Gilbert, S. L., J. Appl. Phys. 44 (1), 292296 (1973).CrossRefGoogle Scholar
3. Micro Laboratory Cleaning Solution, International Products Corp., Trenton, NJ.Google Scholar
4.Sercel, J., Sowada, U., Kahlert, H-J., Basting, D., and Austin, L., “Industrial microprocessing applications of excimer lasers”, Proc. SPIE, Vol. 998, 76–83 (1988).Google Scholar
5.Smith, D. Y., Shiles, E., and Inokuti, M., “The Optical Properties of Metallic Aluminum,” in Handbook of Optical Constants of Solids, edited by Palik, E. D. (Academic Press, New York, 1985).Google Scholar
6.Singh, R. K. and Viatella, J., JOM March 20–23 (1992).Google Scholar
7.Geohegan, D. B., “Diagnostics and Characteristics of Pulsed Laser Deposition Laser Plasmas,” in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (John Wiley & Sons, New York, 1994).Google Scholar
8.Pedraza, A. J., Int. Conf. on Beam Proc. of Adv. Materials, 69–80, edited by J., Singh, Copley, S. M., The Minerals, Metals & Materials Society, Warrendale, PA, 1993.Google Scholar
9. “Clean Holes in Polymers under a Helium Stream,” Lambda Physik, Inc., Lambda Highlights No. 24 (1990).Google Scholar
10.Lumpp, J. K. and Allen, S. D., “Excimer Laser Etching of Aluminum Nitride”, Proc. Int. Symp. Hybrid Microelectronics, ISHM'91 353–8 (1991).Google Scholar
11.Gervais, F., “Aluminum Oxide (Al2O3),” in Handbook of Optical Constants of Solids II, edited by Palik, E. D. (Academic Press, New York, 1991).Google Scholar
12. Extrapolated from data published by David, M., Babu, S. V., Chaudhry, I., and Flint, B. K., Appl. Phys. Lett. 51 (11), 10931095 (1990).CrossRefGoogle Scholar
13.Saenger, K. L., “Angular Distribution of Ablated Material,” in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (John Wiley & Sons, New York, 1994).Google Scholar
14.Taylor, K. M. and Lenie, C., J. Electrochem. Soc. 107 (4), 308314 (1960).CrossRefGoogle Scholar
15.Pelletier, J., Gervais, D., and Pomot, C., J. Appl. Phys. 55 (4), 9941002 (1984).CrossRefGoogle Scholar
16.Li, H. and Lumpp, J. K., in Electronic Packaging Materials Science VIII, edited by Sundahl, R. C., Tu, K-N., Jackson, K.A., and Børgeson, P. (Mater. Res. Soc. Symp. Proc. 390, Pittsburgh, PA, 1995), pp. 257262.Google Scholar
17.Morita, N., Watanabe, T., and Yoshida, Y., Appl. Phys. Lett. 54 (20), 19741975 (1989).CrossRefGoogle Scholar
18.Takahashi, M., Kurihara, Y., Yamada, K., Kanai, K., and Kurihara, K., Electron. Commun. Jpn., Part 2, 173 (8), 105114 (1990).Google Scholar
19.Atobe, K., Honda, M., Fukuoka, N., Okada, M., and Nakagawa, M., Jpn. J. Appl. Phys. 29 (1), 150152 (1990).CrossRefGoogle Scholar
20.Lumpp, J. K. and Allen, S. D., unpublished results.Google Scholar
21.D'Couto, G. C. and Babu, S. V., Int. Conf. on Beam Proc. of Adv. Materials, edited by Singh, J. and Copley, S. M., The Minerals, Metals & Materials Society, Warrendale, PA, 1993.Google Scholar
22.Cao, S., Pedraza, A., and Allard, L. F., J. Mater. Res. 10, 5462 (1995).CrossRefGoogle Scholar