Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T15:08:05.100Z Has data issue: false hasContentIssue false

Fatigue behavior of an Fe48Cr15Mo14Er2C15B6 amorphous steel

Published online by Cambridge University Press:  03 March 2011

D.C. Qiao
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-0100
G.Y. Wang
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-0100
P.K. Liaw*
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996-0100
V. Ponnambalam
Affiliation:
Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714
S.J. Poon
Affiliation:
Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714
G.J. Shiflet
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904-4745
*
a) Address all correspondence to this author. e-mail: pliaw@utk.edu
Get access

Abstract

Four-point-bend fatigue experiments were conducted on the Fe48Cr15Mo14Er2C15B6 bulk metallic glass (BMG), amorphous steel, under load control, employing an electrohydraulic machine, at a frequency of 10 Hz (using a sinusoidal waveform) with an R ratio of 0.1, where R = σmin.max.min. and σmax. are the applied minimum and maximum stresses, respectively). The test environment was laboratory air. Fe48Cr15Mo14Er2C15B6 exhibited a high fatigue-endurance limit (682 MPa), which is found to be greater than those of the Zr-based BMG, Al-alloy, and high-nitrogen steel. However, the stress versus number of fatigue cycles curve of Fe48Cr15Mo14Er2C15B6 has a significantly brittle fracture mode. Some fatigue cracks initiated from the inclusions or porosities, and the fatigue-crack propagation region was large. However, other cracks initiated from the outer tensile surface of the specimen, and the fatigue-crack propagation region was very small. The mechanisms of fatigue-crack initiation are suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A., Shen, B.L., Yavari, A.R., and Greer, A.L.: Mechanical properties of Fe-based bulk glassy alloys in Fe-B-Si-Nb and Fe-Ga-P-C-B-Si. J. Mater. Res. 18, 1487 (2003).CrossRefGoogle Scholar
2Ponnambalam, V., Poon, S.J., Shiflet, G.J., Keppens, V.M., Taylor, R., and Petculescu, G.: Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys. Appl. Phys. Lett. 83, 1131 (2003).CrossRefGoogle Scholar
3Inoue, A., Zhang, T., and Takeuchi, A.: Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM=IV-VIII group transition metal) system. Appl. Phys. Lett. 71, 464 (1997).CrossRefGoogle Scholar
4Ponnambalam, V., Poon, S.J., and Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).CrossRefGoogle Scholar
5Lu, Z.P., Liu, C.T., Porter, W.D., and Thomson, J.R.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).CrossRefGoogle ScholarPubMed
6Ponnambalam, V., Poon, S.J., and Shiflet, G.J.: Fe-Mn-Cr-Mo-(Y, Ln)-C-B (Ln = Lanthanides) bulk metallic glasses as formable amorphous steel alloys. J. Mater. Res. 19, 3046 (2004).CrossRefGoogle Scholar
7Wang, G.Y., Liaw, P.K., Peter, W.H., Yang, B., Yokoyama, Y., Benson, M.L., Green, B.A., Kirkham, M.J., White, S.A., Saleh, T.A., McDaniels, R.L., Steward, R.V., Buchana, R.A., Liu, C.T., and Brooks, C.R.: Fatigue behavior of bulk-metallic glasses. Intermetallics 12, 885 (2004).CrossRefGoogle Scholar
8Wang, G.Y., Liaw, P.K., Peker, A., Yang, B., Benson, M.L., Yuan, W., Peter, W.H., Huang, L., Freels, A., Buchanan, R.A., Liu, C.T., and Brooks, C.R.: Fatigue behavior of Zr-Ti-Ni-Cu-Be bulk-metallic-glasses. Intermetallics 13, 429 (2005).CrossRefGoogle Scholar
9Wang, G.Y., Liaw, P.K., Peker, A., Freels, M., Peter, W.H., Buchanan, R.A., and Brooks, C.R.: Comparison of fatigue behavior of a bulk metallic glass and its composite. Intermetallics 14, 1091 (2006).CrossRefGoogle Scholar
10Gilbert, C.J., Lippmann, J.M., and Ritchie, R.O.: Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior. Scripta Mater. 38, 537 (1998).CrossRefGoogle Scholar
11Flores, K.M., Johnson, W.L., and Dauskardt, R.H.: Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Mater. 49, 1181 (2003).CrossRefGoogle Scholar
12Benedetti, M., Bortolamedi, T., Fontanari, V., and Frendo, F.: Bending fatigue behaviour of differently shot peened Al 6082 T5 alloy. Int. J. Fatigue 26, 889 (2004).CrossRefGoogle Scholar
13Heitkemper, M., Bohne, C., Pyzalla, A., and Fischer, A.: Fatigue and fracture behaviour of a laser surface heat treated martensitic high-nitrogen tool steel. Int. J. Fatigue 25, 101 (2003).CrossRefGoogle Scholar
14Chen, H.S.: Glassy metals. Rep. Prog. Phys. 43, 353 (1980).CrossRefGoogle Scholar
15Donovan, P.E. and Stobbs, W.M.: The structure of shear bands in metallic glasses. Acta Metall. 29, 1419 (1981).CrossRefGoogle Scholar
16Steif, P.S., Spaepen, F., and Hutchinson, J.W.: Strain localization in amorphous metals. Acta Metall. 30, 447 (1982).CrossRefGoogle Scholar
17Leng, Y. and Courtney, T.H.: Multiple shear band formation in metallic glasses in composites. J. Mater. Sci. 26, 588 (1991).CrossRefGoogle Scholar
18Liu, C.T., Heatherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., and Inoue, A.: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans., A 29, 1811 (1998).CrossRefGoogle Scholar
19Hess, P.A., Menzel, B.C., and Dauskardt, R.H.: Fatigue damage in bulk metallic glass. II: Experiments. Scripta Mater. 54, 355 (2006).CrossRefGoogle Scholar
20Schroeder, V. and Ritchie, R.O.: Stress-corrosion fatigue-crack growth in a Zr-based bulk amorphous metal. Acta Metall. 54, 1785 (2006).Google Scholar
21Zhang, Z.F., Eckert, J., and Schultz, L.: Tensile and fatigue fracture mechanisms of a Zr-based bulk metallic glass. J. Mater. Res. 18, 456 (2003).CrossRefGoogle Scholar
22Hess, P.A. and Dauskardt, R.H.: Mechanisms of elevated temperature fatigue crack growth in Zr-Ti-Cu-Ni-Be bulk metallic glass. Acta Metall. 52, 3525 (2004).Google Scholar
23Flores, K.M. and Dauskardt, R.H.: Fracture and deformation of bulk metallic glasses and their composites. Intermetallics 12, 1025 (2004).CrossRefGoogle Scholar
24Choi-Yim, H., Busch, R., Köster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
25Zhang, H., Wang, Z.G., Qiu, K.Q., Zhang, Q.S., and Zhang, H.F.: Cyclic deformation and fatigue-crack propagation of a Zr-based bulk amorphous metal. Mater. Sci. Eng., A-Struct. 356, 173 (2003).CrossRefGoogle Scholar
26Bian, Z., Chen, G.L., He, G., and Hui, X.D.: Microstructure and ductile-brittle transition of as-cast Zr-based bulk glass alloys under compressive testing. Mater. Sci. Eng., A-Struct. 316, 135 (2001).CrossRefGoogle Scholar
27Newman, J. C. Jr., and Raju, I. S.: Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads. NASA Technical Memorandum 85793.Google Scholar
28Qiao, D.C., Liaw, P.K., Fan, C., Lin, Y.H., Wang, G.Y., Choo, H., and Buchanan, R.A.: Fatigue and fracture behavior of (Zr58Ni13.6Cu18Al10.4)99Nb1 bulk-amorphous alloy. Intermetallics 14, 1043 (2006).CrossRefGoogle Scholar
29Hess, P.A., Poon, S.J., Shiflet, G.J., and Dauskardt, R.H.: Indentation fracture toughness of amorphous steel. J. Mater. Res. 20, 783 (2005).CrossRefGoogle Scholar