Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:23:39.084Z Has data issue: false hasContentIssue false

Fiber metallic glass laminates

Published online by Cambridge University Press:  31 January 2011

B.A. Sun
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; and Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
K.P. Cheung
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
J.T. Fan
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
J. Lu*
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
W.H. Wang*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*
a)Address all correspondence to these authors. e-mail: mmmelu@inet.polyu.edu.hk
b)Address all correspondence to these authors. e-mail: whw@aphy.iphy.ac.cn
Get access

Abstract

The fabrication and properties of fiber metallic glass laminates (FMGL) composite composed of Al-based metallic glasses ribbons and fiber/epoxy layers were reported. The metallic glass composite possesses structural features of low density and high specific strength compared to Al-based metallic glass and crystalline Al alloys. The material shows pronounced tensile ductility compared to monolithic bulk metallic glasses.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ashby, M.F.: Materials Selection in Mechanical Design (Pergamon, Oxford, UK 1992)Google Scholar
2.Donald, R.A.: The Science and Engineering of Materials (Brooks/Cole Engineering Division, Monterey, CA 1984) Chap. 16Google Scholar
3.Wang, W.H.: Bulk metallic glasses with functional properties. Adv. Mater. 21, 4524 (2009)CrossRefGoogle Scholar
4.Greer, A.L.: Metallic glasses. Science 267, 1947 (1995)CrossRefGoogle ScholarPubMed
5.Wang, W.H.: The correlation between the elastic constants and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 (2006)CrossRefGoogle Scholar
6.Schuh, C.A., Hufnagel, T.C., Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007)CrossRefGoogle Scholar
7.Pampillo, C.A.: The strength and fracture characteristics of Fe, Ni–Fe and Ni-base glasses. J. Mater. Sci. 10, 1194 (1975)CrossRefGoogle Scholar
8.Wright, W.J., Saha, R., Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42, 642 (2001)CrossRefGoogle Scholar
9.Hays, C.C., Kim, C.P., Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000)CrossRefGoogle ScholarPubMed
10.Bae, D.H., Kim, D.H., Sordelet, D.J.: Synthesis of Ni-based bulk metallic glasses by warm extrusion of powders. Appl. Phys. Lett. 83, 2312 (2003)CrossRefGoogle Scholar
11.Wang, W.H., Wei, Q., Bai, H.Y.: Enhanced thermal stability and microhardness in metallic glass ZrTiCuNiBe alloys by carbon addition. Appl. Phys. Lett. 71, 58 (1997)CrossRefGoogle Scholar
12.Bian, Z., Pan, M.X., Zhang, Y., Wang, W.H.: Carbon-nanotube-reinforced Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass composites. Appl. Phys. Lett. 81, 4739 (2002)CrossRefGoogle Scholar
13.Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008)CrossRefGoogle ScholarPubMed
14.Vermeeren, C.A.: An historic overview of the development of fiber metal laminates. Appl. Compos. Mater. 10, 189 (2003)CrossRefGoogle Scholar
15.Vogelesang, L.B., Volt, A.: Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process. Technol. 103, 1 (2000)CrossRefGoogle Scholar
16.Volt, A., Vogelesang, L.B., Vries, T.J.: Development of fibre metal laminates for advanced aerospace structures. Aircr. Eng. Aerosp. Tec. 71, 558 (1999)Google Scholar
17.Inoue, A.: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998)CrossRefGoogle Scholar
18.Metals Databook edited by Japan Institute of Metals (Maruzen, Tokyo 1983)Google Scholar
19.Alderliesten, R.C.: Damage tolerance of bonded aircraft structures. Int. J. Fatigue 31, 1024 (2009)CrossRefGoogle Scholar
20.ASTM D790 Test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, Annual Book of ASTM Standards Vol. 08.01 (ASTM International, West Conshohocken, PA 2003)Google Scholar
21.Yu, P., Bai, H.Y.: Anomalous compositional dependence of Poisson's ratio and plasticity in CuZrAl bulk metallic glasses. Mater. Sci. Eng., A 485, 1 (2008)CrossRefGoogle Scholar
22.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007)CrossRefGoogle ScholarPubMed
23.Zhao, Y.H., Liao, X.Z., Jin, Z., Valiev, R.Z., Zhu, Y.T.: Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 52, 4589 (2004)CrossRefGoogle Scholar
24.Kumar, S.: Advanced materials: Challenge next decade, Proc. Znt. SAMPE Symp. and Exhib. edited by G. Janicki, V. Bailey,and H. Schjelderup Vol. 35 (Cambridge, UK 1990)2224 Google Scholar
25.The Aluminium Association Standard and Data (2005)Google Scholar
26.Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005)CrossRefGoogle ScholarPubMed
27.Wang, G., Zhao, D.Q., Bai, H.Y., Pan, M.X., Xia, A.L., Han, B.S., Xi, X.K., Wu, Y., Wang, W.H.: Nanoscale periodic morphologies on fracture surface of brittle metallic glasses. Phys. Rev. Lett. 98, 235501 (2007)CrossRefGoogle ScholarPubMed
28.Wang, J.G., Zhao, D.Q., Pan, M.X., Wang, W.H.: Mechanical heterogeneity and mechanism of plasticity of metallic glasses. Appl. Phys. Lett. 94, 031904 (2009)CrossRefGoogle Scholar