Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T00:06:14.241Z Has data issue: false hasContentIssue false

Flame-made Ceria Nanoparticles

Published online by Cambridge University Press:  31 January 2011

L. Mädler
Affiliation:
Institute of Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
W. J. Stark
Affiliation:
Institute of Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
S. E. Pratsinis*
Affiliation:
Institute of Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
*
a)Address all correspondence to this author. e-mail: pratsinis@ivuk.mavt.ethz.ch
Get access

Abstract

Flame spray pyrolysis (FSP) has been used to synthesize high-surface-area ceria from cerium acetate in acetic acid solution. With the addition of an iso-octane/2-butanol mixture to that solution, homogeneous CeO2 nanoparticles were obtained. The specific surface area of the powders ranged from 240 to 101 m2/g by controlling the oxygen dispersion and liquid precursor flow rates through the flame. Furthermore, for production rates from 2 to 10 g/h a constant average primary particle size could be obtained at selected process parameters. The ceria showed high crystallinity and primary particles with a stepped surface. The powder exhibited good thermal stability and conserved up to 40% of its initial specific surface area when calcinated for 2 h at 900 °C. This shows the potential of FSP made ceria for high-temperature applications as in three-way catalysts or fuel cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Trovarelli, A., Catal. Rev. Sci. Eng. 38, 439 (1996).CrossRefGoogle Scholar
2.Trovarelli, A., Zamar, F., Llorca, J., deLeitenburg, C., Dolcetti, G., and Kiss, J.T., J. Catal. 169, 490 (1997).CrossRefGoogle Scholar
3.Djuricic, B. and Pickering, S., J. Eur. Ceram. Soc. 19, 1925 (1999).CrossRefGoogle Scholar
4.Bruce, L.A., Hoang, M., Hughes, A.E., and Turney, T.W., Appl. Catal., A 134, 351 (1996).CrossRefGoogle Scholar
5.Hirano, M. and Inagaki, M., J. Mater. Chem. 10, 473 (2000).CrossRefGoogle Scholar
6.Hakuta, Y., Onai, S., Terayama, H., Adschiri, T., and Arai, K., J. Mater. Sci. Lett. 17, 1211 (1998).CrossRefGoogle Scholar
7.Martinez-Arias, A., Fernandez-Garcia, M., Ballesteros, V., Salamanca, L.N., Conesa, J.C., Otero, C., and Soria, J., Langmuir 15, 4796 (1999).CrossRefGoogle Scholar
8.Masui, T., Fujiwara, K., Peng, Y.M., Sakata, T., Machida, K., Mori, H., and Adachi, G., J. Alloy. Compd. 269, 116 (1998).CrossRefGoogle Scholar
9.Terribile, D., Trovarelli, A., Llorca, J., deLeitenburg, C., and Dolcetti, G., J. Catal. 178, 299 (1998).CrossRefGoogle Scholar
10.Perrichon, V., Laachir, A., Abouarnadasse, S., Touret, O., and Blanchard, G., Appl. Catal., A 129, 69 (1995).CrossRefGoogle Scholar
11.Kaspar, J., Fornasiero, P., and Graziani, M., Catal. Today 50, 285 (1999).CrossRefGoogle Scholar
12.Pratsinis, S.E., Prog. Energy Combust. 24, 197 (1998).CrossRefGoogle Scholar
13.ValletRegi, M., Conde, F., Nicolopoulos, S., Ragel, C.F., and Gonzalez-Calbet, J.M., in Synthesis and Properties of Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2— Ismanam-96, Materials Science Forum (Transtec Publications Ltd, Zurich-Uetikon, Switzerland, 1997), Vol. 235–279, pp. 291296.Google Scholar
14.Suzuki, M., Kagawa, M., Syono, Y., and Hirai, T., J. Mater. Sci. 27, 679 (1992).CrossRefGoogle Scholar
15.Guillou, N., Nistor, L.C., Fuess, H., and Hahn, H., Nanostruct. Mater. 8, 545 (1997).CrossRefGoogle Scholar
16.Tscho¨pe, A. and Ying, J.Y., Nanostruct. Mater. 4, 617 (1994).CrossRefGoogle Scholar
17.Sokolowski, M., Sokolowska, A., Michalski, A., and Gokieli, B., J. Aerosol Sci. 8, 219 (1977).CrossRefGoogle Scholar
18.Laine, R.M., Baranwal, R., Hinklin, T., Treadwell, D., Sutorik, A., Bickmore, C., Waldner, K., and Neo, S.S., Key Eng. Mater. 159, 17 (1999).Google Scholar
19.Laine, R.M., Hinklin, T., Williams, G., and Rand, S.C., in Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2, of Materials Science Forum (Trans Tech Publications Ltd, Zurich-Uetikon, Switzerland, 2000), Vol. 343–3, pp. 500510.Google Scholar
20.Ma¨dler, L., Kammler, H.K., Mueller, R., and Pratsinis, S.E., J. Aerosol Sci. 33, 369 (2002).CrossRefGoogle Scholar
21.Kilian, A. and Morse, T.F., Aerosol Sci. Technol. 34, 227 (2001).CrossRefGoogle Scholar
22.Wolcyrz, M. and Kepinski, L., J. Solid State Chem. 99, 409 (1992).CrossRefGoogle Scholar
23.Cheary, R.W. and Coelho, A., J. Appl. Crystallogr. 25, 109 (1992).CrossRefGoogle Scholar
24.Cheary, R.W. and Coelho, A.A., J. Appl. Crystallogr. 31, 851 (1998).CrossRefGoogle Scholar
25.Karpetis, A.N. and Gomez, A., Combust. Flame 121, 1 (2000).CrossRefGoogle Scholar
26.Gutheil, E., Modeling of Technical Spray Flames (VDI Verlag, Du¨sseldorf, Germany, 1998).Google Scholar
27.Pratsinis, S.E., Zhu, W.H., and Vemury, S., Powder Technol. 86, 87 (1996).CrossRefGoogle Scholar
28.Stark, W.J., Pratsinis, S.E., and Baiker, A., J. Catal. 203, 516 (2001).CrossRefGoogle Scholar
29.Briesen, H., Fuhrmann, A., and Pratsinis, S.E., Chem. Eng. Sci. 53, 4105 (1998).CrossRefGoogle Scholar