Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T04:43:52.287Z Has data issue: false hasContentIssue false

Formation of highly oriented diamond film on carburized (100) Si substrate

Published online by Cambridge University Press:  03 March 2011

Hideaki Maeda
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hakozaki, Higashi-ku, Fukuoka 812, Japan
Miki Irie
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hakozaki, Higashi-ku, Fukuoka 812, Japan
Takafumi Hino
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hakozaki, Higashi-ku, Fukuoka 812, Japan
Katsuki Kusakabe
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hakozaki, Higashi-ku, Fukuoka 812, Japan
Shigeharu Morooka*
Affiliation:
Department of Chemical Science and Technology, Kyushu University, 6–10–1, Hakozaki, Higashi-ku, Fukuoka 812, Japan
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Highly oriented diamond film was grown on a (100) Si substrate by a bias-enhanced microwave-plasma chemical vapor deposition. The Si surface was carburized at a faster rate by bias treatment than by carburization alone, but the initial carburization stage was indispensable. During the bias treatment, the flat surface was changed to a textured structure on the nanometer scale. The formation of this structure was required for the synthesis of a highly oriented diamond film. Diamond microcrystals formed subsequently were irregular and of a few to a few tens nanometers in size. They then grew to oriented film in the following growth process.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Collins, A. T. and Lightowlers, E. C., The Properties of Diamond, edited by Field, J. E. (Academic, London, 1979), p. 79.Google Scholar
2Collins, A. T., Semicond. Sci. Techol. 55, 505 (1989).Google Scholar
3Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
4Stoner, B. R. and Glass, J. T., Appl. Phys. Lett. 60, 698 (1992).Google Scholar
5Stoner, B. R., Ma, G. H., Wolter, S. D., Zhu, W., Wang, Y-C., Davis, R. F., and Glass, J. T., Diamond Relat. Mater. 2, 142 (1993).CrossRefGoogle Scholar
6Belton, D. N. and Schmieg, S. J., J. Appl. Phys. 66, 4223 (1989).Google Scholar
7Carter, C. H. Jr., Davis, R. F., and Nutt, S. R., J. Mater. Res. 1, 811 (1986).CrossRefGoogle Scholar
8Kohl, R., Wild, C., Herres, N., Koidl, P., Stoner, B. R., and Glass, J. T., Appl. Phys. Lett. 63, 1792 (1993).CrossRefGoogle Scholar
9Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
10Stoner, B. R., Kao, C-t., Malta, D. M., and Glass, R. C., Appl. Phys. Lett. 62, 2347 (1993).Google Scholar
11Jiang, X. and Klages, C. P., Diamond Relat. Mater. 2, 1112 (1993).Google Scholar
12Jiang, X., Klages, C. P., Zachai, R., Hartweg, M., and Fusser, H. J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
13Yugo, S., Kimura, T., and Kanai, T., Diamond Relat. Mater. 2, 328 (1993).CrossRefGoogle Scholar
14Stoner, B. R., Ma, G-H.M., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
15Sheldon, B. W., Shigesato, Y., Boekenhauer, R. E., and Rankin, J., in Proceedings of the First International Conference on the Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Muranaka, M., and Feldman, A. (Elsevier, New York, 1991), p. 229.Google Scholar
16Sheldon, B. W., Csencsits, R., Rankin, J., Boekenhauer, R. E., and Shigesato, Y., J. Appl. Phys. 75, 5001 (1994).CrossRefGoogle Scholar
17Maeda, H., Hino, T., Irie, M., Kusakabe, K., and Morooka, S., unpublished.Google Scholar
18Koizumi, K., Murakami, T., and Inuzuka, T., Appl. Phys. Lett. 57, 563 (1990).CrossRefGoogle Scholar
19Maeda, H., Masuda, S., Kusakabe, K., and Morooka, S., Diamond Relat. Mater. 3, 398 (1994).Google Scholar
20Jiang, X., Schiffmann, K., Westphal, A., and Klages, C. P., Appl. Phys. Lett. 63, 1203 (1993).CrossRefGoogle Scholar