Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:13:58.730Z Has data issue: false hasContentIssue false

Formation of nanopore arrays on stainless steel surface by anodization for visible-light photocatalytic degradation of organic pollutants

Published online by Cambridge University Press:  05 July 2012

Weiting Zhan
Affiliation:
School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Hongwei Ni*
Affiliation:
School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Rongsheng Chen
Affiliation:
School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Xinli Song
Affiliation:
School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Kaifu Huo
Affiliation:
School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Jijiang Fu
Affiliation:
School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
*
a)Address all correspondence to this author. e-mail: nihongwei320@sohu.com
Get access

Abstract

There is high scientific and technological interest to develop photocatalytic coatings on stainless steels surface to remove fouling under light radiation. In this study, a novel method is described to prepare photocleanable stainless steel by anodization to form aligned nanopore arrays (NPAs) on the surface in ethylene glycol containing perchloric acid. Perchloric acid concentration, applied voltage and anodization time of anodization process were investigated. The NPAs are mainly composed of iron (III) oxide and chromium (III) oxide. This photocleanable stainless steel has remarkable visible-light photocatalytic activities, which show potential applications particularly for outdoor purpose. Moreover, the stainless steel surface remains highly polished and exhibits good corrosion resistance after anodization.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rosmaninho, R., Santos, O., Nylander, T., Paulsson, M., Beuf, M., Benezech, T., Yiantsios, S., Andritsos, N., Karabelas, A., Rizzo, G., Muller-Steinhagen, H., and Melo, L.F.: Modified stainless steel surfaces targeted to reduce fouling-evaluation of fouling by milk components. J. Food Eng. 80(4), 1176 (2007).CrossRefGoogle Scholar
2.Ignatova, M., Voccia, S., Gabriel, S., Gilbert, B., Cossement, D., Jerome, R., and Jerome, C.: Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: Synthesis, characterization, and properties. Langmuir 25(2), 891 (2009).CrossRefGoogle ScholarPubMed
3.Tavares, J., Shahryari, A., Harvey, J., Coulombe, S., and Omanovic, S.: Corrosion behavior and fibrinogen adsorptive interaction of SS 316L surfaces covered with ethylene glycol plasma polymer-coated Ti nanoparticles. Surf. Coat. Technol. 203(16), 2278 (2009).CrossRefGoogle Scholar
4.Fujishima, A., Zhang, X.T., and Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515 (2008).CrossRefGoogle Scholar
5.Ravelli, D., Dondi, D., Fagnoni, M., and Albini, A.: Photocatalysis. A multifaceted concept for green chemistry. Chem. Soc. Rev. 38(7), 1999 (2009).CrossRefGoogle ScholarPubMed
6.Paleologou, A., Marakas, H., Xekoukoulotakis, N.P., Moya, A., Vergara, Y., Kalogerakis, N., Gikas, P., and Mantzavinos, D.: Disinfection of water and wastewater by TiO2 photocatalysis, sonolysis and UV-C irradiation. Catal. Today 129(1–2), 136 (2007).CrossRefGoogle Scholar
7.Liu, Z.Y., Bai, H.W., and Sun, D.R.: Facile fabrication of hierarchical porous TiO2 hollow microspheres with high photocatalytic activity for water purification. Appl. Catal., B 104(3–4), 234 (2011).CrossRefGoogle Scholar
8.Puddu, V., Choi, H., Dionysiou, D.D., and Puma, G.L.: TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl. Catal., B 94(3–4), 211 (2010).CrossRefGoogle Scholar
9.Palmisano, G., Augugliaro, V., Pagliaro, M., and Palmisano, L.: Photocatalysis: A promising route for 21st century organic chemistry. Chem. Commun. 38(48), 3425 (2007).CrossRefGoogle Scholar
10.Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 11(3), 401 (2007).CrossRefGoogle Scholar
11.Cui, Y., Du, H., and Wen, L.S.: Enhancement of photoelectrocatalytic properties of stainless-steel/TiO2 electrode by applying mid-frequency electric field. Environ. Chem. Lett. 7(4), 321 (2009).Google Scholar
12.Evans, P., Pemble, M.E., and Sheel, D.W.: Precursor-directed control of crystalline type in atmospheric pressure CVD growth of TiO2 on stainless steel. Chem. Mater. 18(24), 5750 (2006).CrossRefGoogle Scholar
13.Giolli, C., Borgioli, F., Credi, A., Di Fabio, A., Fossati, A., Miranda, M.M., Parmeggiani, S., Rizzi, G., Scrivani, A., Troglio, S., Tolstoguzov, A., Zoppi, A., and Bardi, U.: Characterization of TiO2 coatings prepared by a modified electric arc physical vapor deposition system. Surf. Coat. Technol. 202(1), 13 (2007).CrossRefGoogle Scholar
14.Li, Z.H., Qiu, N.X., and Yang, G.M.: Effects of synthesis parameters on the microstructure and phase structure of porous 316L stainless steel supported TiO2 membranes. J. Membr. Sci. 326(2), 533 (2009).CrossRefGoogle Scholar
15.Chong, M.N., Jin, B., Chow, C.W.K., and Saint, C.: Recent developments in photocatalytic water treatment technology: A review. Water Res. 44(10), 2997 (2010).Google Scholar
16.Tachikawa, T., Fujitsuka, M., and Majima, T.: Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. J. Phys. Chem. C. 111(14), 5259 (2007).CrossRefGoogle Scholar
17.Zhou, X.M., Yang, H.C., Wang, C.X., Mao, X.B., Wang, Y.S., Yang, Y.L., and Liu, G.: Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J. Phys. Chem. C. 114(40), 17051(2010).CrossRefGoogle Scholar
18.Mor, G.K., Prakasam, H.E., Varghese, O.K., Shankar, K., and Grimes, C.A.: Vertically oriented Ti−Fe−O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7(8), 2356 (2007).Google Scholar
19.Pradhan, G.K. and Parida, K.M.: Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. ACS Appl. Mater. Interfaces 3(2), 317(2011).CrossRefGoogle Scholar
20.Hahn, N.T., Ye, H.C., Flaherty, D.W., Bard, A.J., and Mullins, C.B.: Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano. 4(4), 1977 (2010).Google Scholar
21.Zhang, Z.H., Hossain, M.F., Miyazaki, T., and Takahashi, T.: Gas phase photocatalytic activity of ultrathin Pt layer coated on α-Fe2O3 films under visible light illumination. Environ. Sci. Technol. 44(12), 4741 (2010).CrossRefGoogle ScholarPubMed
22.Mohapatra, S.K., John, S.E., Banerjee, S., and Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21(14), 3048 (2009).Google Scholar
23.Zhang, Z.H., Hossain, M.F., and Takahashi, T.: Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal., B 95(3–4), 423 (2010).CrossRefGoogle Scholar
24.Su, Z.X. and Zhou, W.Z.: Pore diameter control in anodic titanium and aluminum oxides. J. Mater. Chem. 21(2), 357 (2011).Google Scholar
25.Schmidt-Stein, F., Thiemann, S., Berger, S., Hahn, R., and Schmuki, P.: Mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Mater. 58(19), 6317 (2010).CrossRefGoogle Scholar
26.Habazaki, H., Konno, Y., Aoki, Y., Skeldon, P., and Thompson, G.E.: Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride−ethylene glycol electrolytes with different water contents. J. Phys. Chem. C. 114(44), 18853 (2010).CrossRefGoogle Scholar
27.Diaz, M., Sevilla, P., Galan, A.M., Escolar, G., Engel, E., and Gil, F.J.: Evaluation of ion release, cytotoxicity, and platelet adhesion of electrochemical anodized 316L stainless steel cardiovascular stents. J. Biomed. Mater. Res. Part B 87(2), 555 (2008).CrossRefGoogle ScholarPubMed
28.Taveira, L.V., Montemor, M.F., Belo, M.D., Ferreira, M.G., and Dick, L.F.P.: Influence of incorporated Mo and Nb on the Mott–Schottky behavior of anodic films formed on AISI 304L. Corros. Sci. 52(9), 2813 (2010).CrossRefGoogle Scholar
29.Nair, R.G., Tripathi, A.M., and Samdarshi, S.K.: Photocatalytic activity of predominantly rutile mixed phase Ag/TiV oxide nanoparticles under visible light irradiation. Energy 36(5), 3342 (2011).CrossRefGoogle Scholar
30.Liang, Y.Q., Cui, Z.D., Zhu, S.L., and Yang, X.J.: Formation and characterization of iron oxide nanoparticles loaded on self-organized TiO2 nanotubes. Electrochim. Acta 55(18), 5245 (2010).CrossRefGoogle Scholar
31.Qu, X., Kobayashi, N., and Komatsu, T.: Solid nanotubes comprising α-Fe2O3 nanoparticles prepared from ferritin protein. ACS Nano 4(3), 1732 (2010).Google Scholar
32.Elsener, B., Addari, D., Coray, S., and Rossi, A.: Nickel-free manganese bearing stainless steel in alkaline media—electrochemistry and surface chemistry. Electrochim. Acta 56(12), 4489 (2011).CrossRefGoogle Scholar
33.Doff, J., Archibong, P.E., Jones, G., Korolev, E.V., Skeldon, P., and Thompson, G.E.: Formation and composition of nanoporous films on 316L stainless steel by pulsed polarization. Electrochim. Acta 56(9), 3225 (2011).CrossRefGoogle Scholar
34.Ferreira, M.G.S., Hakiki, N.E., Goodlet, G., Faty, S., Simoes, A.M.P., and Belo, M.D.: Influence of the temperature of film formation on the electronic structure of oxide films formed on 304stainless steel. Electrochim. Acta 46(24–25), 3767 (2001).Google Scholar
35.Hakiki, N.E.: Influence of surface roughness on the semiconducting properties of oxide films formed on 304 stainless steel. J. Appl. Electrochem. 38(5), 679 (2008).Google Scholar
36.McBee, C.L. and Kruger, J.: Nature of passive films on iron-chromium alloys. Electrochim. Acta 17(8), 1337 (1972).CrossRefGoogle Scholar
37.Xiong, G., Joly, A.G., Holtom, G.P., Wang, C.M., McCready, D.E., Beck, K.M., and Hess, W.P.: Excited carrier dynamics of α-Cr2O3/α-Fe2O3 core-shell nanostructures. J. Phys. Chem. B 110(34), 16937 (2006).Google Scholar
38.Chen, L.S. and Lu, G.L.: Study on the effects of Cr2O3 on the reduction behavior of γ-Fe2O3. J. Mater. Sci. 34(17), 4193 (1999).Google Scholar
39.Chambers, S.A., Williams, J.R., Henderson, M.A., Joly, A.G., Varela, M., and Pennycook, S.J.: Structure, band offsets and photochemistry at epitaxial α-Cr2O3/α-Fe2O3 heterojunctions. Surf. Sci. 587(3), L197 (2005).CrossRefGoogle Scholar
Supplementary material: Image

Zhan et al. supplementary figure

Figures

Download Zhan et al. supplementary figure(Image)
Image 279.5 KB