Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T01:20:06.239Z Has data issue: false hasContentIssue false

Growth kinetics and characterizations of gallium nitride thin films by remote PECVD

Published online by Cambridge University Press:  31 January 2011

S.W. Choi
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
K.J. Bachmann
Affiliation:
Department of Materials Science and Engineering and Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695
G. Lucovsky
Affiliation:
Department of Materials Science and Engineering and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

Thin films of GaN have been deposited at relatively low growth temperatures by remote plasma-enhanced chemical-vapor deposition (RPECVD), using a plasma excited NH3, and trimethylgallium (TMG), injected downstream from the plasma. The activation energy for GaN growth has been tentatively assigned to the dissociation of NH groups as the primary N-atom precursors in the surface reaction with adsorbed TMG, or TMG fragments. At high He flow rates, an abrupt increase in the growth rate is observed and corresponds to a change in the reaction mechanism attributed to the formation of atomic N. X-ray diffraction reveals an increased tendency to ordered growth in the 〈0001〉 direction with increasing growth temperature, He flow rate, and rf plasma power. Infrared spectra show the fundamental lattice mode of GaN at 530 cm−1 without evidence for vibrational modes of hydrocarbon groups.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Marusca, H.P. and Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969).CrossRefGoogle Scholar
2Das, K. and Ferry, D. K., Solid-State Electron. 19, 851 (1976).CrossRefGoogle Scholar
3Pankove, J.I., J. Lumin. 7, 114 (1973).CrossRefGoogle Scholar
4Pankove, J. I., RCA Rev. 34, 336 (1973).Google Scholar
5Pankove, J. I., Phys. Rev. Lett. 34, 809 (1975).CrossRefGoogle Scholar
6O'clock, G.D. Jr., and Duffy, M.T., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
7Hovel, H. J. and Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972).CrossRefGoogle Scholar
8Crouch, R. K., Debnam, W. J., and Fripp, A. L., J. Mater. Sci. 13, 2358 (1978).CrossRefGoogle Scholar
9Elwell, D., Feigelson, R. S., Simkins, M. M., and Tiller, W.A., J. Cryst. Growth 66, 45 (1984).CrossRefGoogle Scholar
10Kawabara, T., Matsuda, T., and Koike, S., J. Appl. Phys. 56 (8), 2367 (1984).CrossRefGoogle Scholar
11Matloubian, M. and Gershenzon, M., J. Electron Mater. 14, 633 (1985).CrossRefGoogle Scholar
12Gotoh, H., Suga, T., Suzuki, H., and Kimata, M., Jpn. J. Appl. Phys. 20, L545 (1981).Google Scholar
13Matsubara, K. and Takagi, T., Jpn. J. Appl. Phys. 22 (1), 511 (1983).CrossRefGoogle Scholar
14Yoshida, S., Misawa, S., and Gonda, S., J. Vac. Sci. Technol. B 1, 250 (1983).CrossRefGoogle Scholar
15Paisley, M.J., Sitar, Z., Posthill, J.B., and Davis, R.F., J. Vac. Sci. Technol. A 7, 701 (1989).CrossRefGoogle Scholar
16Mazzarese, D., Tripathi, A., Conner, W. C., Jones, K.A., Calderon, L., and Eckart, D.W., J. Electron. Mater. 18, 369 (1989).CrossRefGoogle Scholar
17Hashimoto, M., Amano, H., Sawaki, N., and Akasaki, I., J. Cryst. Growth 68, 163 (1984).CrossRefGoogle Scholar
18Anthony, B., Breaux, L., Hsu, T., Benerjee, S., and Tasch, A., J. Vac. Sci. Technol. B 7 (4), 621 (1989).CrossRefGoogle Scholar
19Knights, J. C. and Lujan, R. A., J. Appl. Phys. 49 (3), 1291 (1978).CrossRefGoogle Scholar
20Choi, S.W., Ph.D. Thesis at North Carolina State University (1991).Google Scholar