Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:27:32.473Z Has data issue: false hasContentIssue false

Growth of vertically oriented films of carbon nanotubes by activated catalytic chemical vapor deposition on Fe–Co/TiN/Si(100) substrates

Published online by Cambridge University Press:  31 January 2011

F. Le Normand*
Affiliation:
Groupe Surfaces and Interfaces, Institut de Physique et Chimie des Matériaux (IPCMS), UMR 7504 Centre national de la Recherche Scientifique (CNRS) et Université Louis Pasteur (ULP), 67034 Strasbourg Cedex, France
C.T. Fleaca
Affiliation:
Groupe Surfaces and Interfaces, Institut de Physique et Chimie des Matériaux (IPCMS), UMR 7504 Centre national de la Recherche Scientifique (CNRS) et Université Louis Pasteur (ULP), 67034 Strasbourg Cedex, France
M. Gulas
Affiliation:
Groupe Surfaces and Interfaces, Institut de Physique et Chimie des Matériaux (IPCMS), UMR 7504 Centre national de la Recherche Scientifique (CNRS) et Université Louis Pasteur (ULP), 67034 Strasbourg Cedex, France
A. Senger
Affiliation:
Groupe Surfaces and Interfaces, Institut de Physique et Chimie des Matériaux (IPCMS), UMR 7504 Centre national de la Recherche Scientifique (CNRS) et Université Louis Pasteur (ULP), 67034 Strasbourg Cedex, France
O. Ersen
Affiliation:
Groupe Surfaces and Interfaces, Institut de Physique et Chimie des Matériaux (IPCMS), UMR 7504 Centre national de la Recherche Scientifique (CNRS) et Université Louis Pasteur (ULP), 67034 Strasbourg Cedex, France
I.N. Mihailescu
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, 76900 Bucharest, Romania
G. Socol
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, 76900 Bucharest, Romania
D. Muller
Affiliation:
Institut d’Electronique du Solide et des Systémes (INESS), UMR 7163 Centre national de la Recherche Scientifique (CNRS) et Université Louis Pasteur (ULP), 67037 Strasbourg Cedex, France
M.C. Marco de Lucas
Affiliation:
Institut Carnot de Bourgogne, UMR 5209 Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne, F-21078 Dijon Cedex, France
*
a)Address all correspondence to this author. e-mail: francois.le-normand@ipcms.u-strasbg.fr
Get access

Abstract

In this paper, the growth of thin and dense films of vertically aligned carbon nanotubes (CNTs) on Fe–Co/TiN/Si(100) substrates is reported. Special attention is held to the preparation of the TiN buffer layers. This layer is deposited by pulse laser deposition at high temperature with a high texturation according to [TiN(100)//Si(100)]. Further ammonia heat treatment is performed at 623 K to control a Ti:N stoichiometry and remove oxygen impurity. Fe and Co as catalysts are subsequently deposited at high temperature (923 K) at the monolayer level with two ultrahigh vacuum evaporator cells. The growth of CNTs is performed by a direct-current plasma-enhanced and hot filaments-assisted catalytic chemical vapor deposition (dc HF CCVD) process. Highly dense films of CNTs, are obtained with only 0.5 nm Fe(Co) evaporated. Observations by transmission electron microscopy show that most of the CNTs display sizes in the 2.5–6 nm range, most of them with a double-wall (DW). This is in agreement with spectral features of the Raman radial breathing modes (RBM) in the 70–130 cm−1 range. Generally, these large-diameter DWCNTs display a high defect density with morphologies partially collapsed into flattened twisted shapes.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dresselhaus, M.S., Dresselhaus, G., Avouris, P.: Carbon Nanotubes: Synthesis, Structure, Properties and Applications Springer Berlin 2001CrossRefGoogle Scholar
2Loiseau, A., Gadelle, P., Peigney, P., Blase, X., Charlier, J.C., Ducastelle, M.: Understanding Carbon Nanotubes: From Theory to Applications Springer Berlin 2006 49CrossRefGoogle Scholar
3Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 1991CrossRefGoogle Scholar
4Iijima, S., Ichihashi, T., Ando, Y.: Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356, 776 1992Google Scholar
5Nagy, J.B., Bister, G., Fonseca, A., Mehn, D., Konya, Z., Kiricsi, I., Horvath, Z.E., Biro, L.P.: On the growth mechanism of single-walled carbon nanotubes by catalytic carbon vapor deposition on supported metal catalysts. J. Nanosci. Nanotechnol. 4, 326 2004CrossRefGoogle ScholarPubMed
6Murakami, Y., Yamakita, S., Okubo, T., Maruyama, S.: Single-walled carbon nanotubes catalytically grown from mesoporous silica thin film. Chem. Phys. Lett. 375, 393 2003CrossRefGoogle Scholar
7Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Water assisted highly efficient synthesis of impurity-free single-walled carbon nanotube. Science 306, 1362 2004CrossRefGoogle Scholar
8Puretzky, A.A., Geohegan, D.B., Jesse, S., Ivanov, I.N., Eres, G.: Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Appl. Phys. A 81, 223 2005CrossRefGoogle Scholar
9Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N.: Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105 1998CrossRefGoogle Scholar
10Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J., Milne, W.I.: Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308 2001CrossRefGoogle Scholar
11Meyyappan, M., Delzeit, L., Cassell, A., Hash, D.: Carbon nanotube growth by PECVD: A review. Plasma Source Technol. 12, 205 2002CrossRefGoogle Scholar
12Melechko, A.V., Merkulov, V.I., MacKnight, T.E., Guillorn, M.A., Klein, K.L., Lowndes, D.H., Simpson, M.L.: Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J. Appl. Phys. 97, 041301 2005CrossRefGoogle Scholar
13Cojocaru, C.S., Kim, D., Pribat, D., Bouree, J.E.: Synthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma-enhanced chemical vapor deposition. Thin Solid Films 501, 227 2006CrossRefGoogle Scholar
14Cojocaru, C.S., Senger, A., Normand, F. Le: A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition. J. Nanosci. Nanotechnol. 6, 1331 2006CrossRefGoogle ScholarPubMed
15Normand, F. Le, Cojocaru, C.S., Fleaca, C., Li, J.Q., Vincent, P., Pirio, G., Gangloff, L., Nedellec, Y., Legagneux, P.: A comparative study of the field-emission properties of aligned films of carbon nanostructures, from carbon nanotubes to diamond. Eur. Phys. J., Appl. Phys. 38, 115 2007CrossRefGoogle Scholar
16Cojocaru, C.S., Kim, D., Pribat, D., Minoux, E., Gangloff, L., Legagneux, P., Bouree, J.E.: Synthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma-enhanced chemical vapor deposition. J. Non-Cryst. Solids 352, 1352 2006CrossRefGoogle Scholar
17Lacerda, R.G., Teo, K.B.K., Rupesinghe, N.L., Koziol, K.K.K., The, A.S., Yang, M.H., Dalal, S.H., Roy, D., Chhowalla, M., Amaratunga, G.A.H., Milne, W.I., Hasko, D.G., Wycszik, F., Legagneux, P.: Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation. Appl. Phys. Lett. 84, 269 2004CrossRefGoogle Scholar
18Vigolo, B., Cojocaru, C.S., Faerber, J., Arabski, Y., Gangloff, L., Legagneux, P., Lezec, H., Normand, F. Le: Localized CVD growth of oriented and individual carbon nanotubes from nanoscaled dots prepared by lithographic sequences. To be published in J. Nanosci. NanotechnolGoogle Scholar
19Park, K.H., Yim, J.H., Koh, K.H., Lee, S.N.: Catalyst-assisted hot filament chemical vapor deposition and characterization of carbon nanostructures. Thin Solid Films 501, 233 2006CrossRefGoogle Scholar
20Cojocaru, C.S., Larijani, M., Mistra, D.S., Singh, M.K., Veis, P., Normand, F. Le: A new polarised hot filament chemical vapor deposition process for homogeneous diamond nucleation on Si(100). Diamond Relat. Mater. 13, 270 2004CrossRefGoogle Scholar
21Nemanich, J., Solin, S.A.: First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392 1979CrossRefGoogle Scholar
22Stoquert, J.P., Pecheux, F., Herve, Y., Marchal, H., Stuck, R., Siffert, P.: VRBS: A virtual RBS simulation tool for ion beam analysis. Nucl. Instrum. Methods Phys. Res. B 136, 1152 1998CrossRefGoogle Scholar
23Arnault, J.C., Demuynck, L., Speisser, C., Normand, F. Le: Mechanisms of CVD diamond nucleation and growth on mechanically scratched Si(100) surfaces. Eur. Phys. J. B 11, 327 1999CrossRefGoogle Scholar
25Spengler, W., Kaiser, R., Christensen, A.N., Muller-Vogt, G.: Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN. Phys. Rev. B 17, 1095 1978CrossRefGoogle Scholar
26Cheng, Y.H., Tai, B.K., Lau, S.P., Kupfer, H., Richter, F.: Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc. J. Appl. Phys. 92, 1845 2002CrossRefGoogle Scholar
27Guillot, J., Chappé, J.M., Heintz, O., Martin, N., Imhoff, L., Takadoum, J.: Phase mixture in MOCVD and reactive sputtering TiOxNy thin films revealed and quantified by XPS factorial analysis. Acta Mater. 54, 3067 2006CrossRefGoogle Scholar
28Porte, L., Roux, L., Hanus, J.: Vacancy effects in the x-ray photoelectron spectra of TiNx. J. Phys. Rev. B 28, 3214 1983CrossRefGoogle Scholar
29Cojocaru, C.S., Normand, F. Le: On the role of activation mode in the plasma- and hot filaments-enhanced catalytic chemical vapour deposition of vertically aligned carbon nanotubes. Thin Solid Films 515, 53 2006CrossRefGoogle Scholar
30Sadezky, A., Muckenhuber, H., Grothe, R., Niesser, R., Poschl, U.: Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43, 1731 2005CrossRefGoogle Scholar
31Nakamura, N., Fujitsuka, M., Kitajima, M.: Disorder-induced line broadening in first-order Raman scattering from graphite. Phys. Rev. B 41, 12260 1990CrossRefGoogle ScholarPubMed
32Kuzmany, H., Pfeiffer, R., Salk, N., Gunther, B.: The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 42, 911 2004CrossRefGoogle Scholar
33Matthews, M.J., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Endo, M.: Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B. 59, R6585 1999CrossRefGoogle Scholar
34Telg, H., Maultzsch, J., Reich, S., Hennrich, F., Thomsen, C.: Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett. 93, 177401 2004CrossRefGoogle ScholarPubMed
35Simon, F., Pfeiffer, R., Kramberger, C., Holzweber, M., Kuzmany, H.: The Raman response of double wall carbon nanotubes. arXiv:cond-mat/0404110 v1, 5 Apr 2004.Google Scholar
36Hiramatsu, M., Nagao, H., Taniguchi, M., Amano, H., Ando, Y., Hori, M.: High-rate growth of films of dense, aligned double-walled carbon nanotubes using microwave plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 44, L693 2005CrossRefGoogle Scholar
37Pecz, B., Frangis, N., Logothetidis, S., Alexandrou, I., Barna, P.B., Stoemenos, J.: Electron microscopy characterization of TiN films on Si, grown by d.c. reactive magnetron sputtering. Thin Solid Films 268, 57 1995CrossRefGoogle Scholar
38Kato, T., Jeong, G.H., Hirata, T., Hatakeyama, R., Tohji, K., Motomiyaz, K.: Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition. Chem. Phys. Lett. 381, 422 2003CrossRefGoogle Scholar
39Li, Y., Wang, D., Javey, A., Hung, S., Ural, A., Rolandi, M., Mann, D., Cao, J., Wang, Q., Kim, W., Yenilmez, E., Kong, J., Gibbons, J.F., Nishi, Y., Dai, H.: Preferential growth of semiconducting single-walled carbon nanotubes by a plasma-enhanced CVD method. Nano Lett. 4, 317 2004CrossRefGoogle Scholar
40Henry, C.: Surface studies of supported model catalysts. Surf. Sci. Rep. 31, 231 1998CrossRefGoogle Scholar