Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T18:25:28.606Z Has data issue: false hasContentIssue false

Heteroepitaxy of rare-earth hexa-aluminates on sapphire

Published online by Cambridge University Press:  03 March 2011

K.J. Vaidya
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
C.Y. Yang
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
M. DeGraef
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
F.F. Lange
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
Get access

Abstract

We have grown epitaxial thin films of rare-earth hexa-aluminates on basal plane sapphire from liquid precursors. LnAl11O18 (Ln = Gd3+, Nd3+) films form via the reaction of a perovskite intermediate phase and the sapphire substrate according to LnAlO3 + 5Al2O3 = LnAl11O18. Hexa-aluminate thin films with magnetoplumbite (MP) structure grow epitaxially with (0001)mp ‖(0001)s, 〈1120mp‖〈1010〉s orientation relationship. The a-axis of the film is rotated 30°with respect to the substrate. This rotation results in a smaller mismatch (∼1%) between the two oxygen sublattices. Thermodynamic and kinetic arguments pertaining to magnetoplumbite formation for the smaller Gd3+ cation are presented. These epitaxial thin films are likely to have application in higher temperature ion conduction, catalysis, fluorescence, and as laser host.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lange, F. F., Ultrastructure Processing of Ceramics, Glasses Ordered Polymers and Advanced Optical Materials, edited by Hench, L. L., West, J. K., and Ulrich, D. R. (John Wiley and Sons, New York), (in press).Google Scholar
2Lange, F. F., Proc. Recrystallization '92, edited by Fuentes, M. and Gil Sevillano, J. (Trans. Tech. Publications, Germany, UK, USA, 1992), pp. 8190.Google Scholar
3Miller, K. T. and Lange, F. F., in Processing Science of Advanced Ceramics, edited by Aksay, I. A., McVay, G. L., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), pp. 191199.Google Scholar
4Miller, K. T., Chan, C. J., Cain, M. G., and Lange, F. F., J. Mater.Res. 8, 169 (1993).CrossRefGoogle Scholar
5Thompson, C. V., Ann. Rev. Mater. Sci. 20, 245268 (1990).CrossRefGoogle Scholar
6Miller, K. T. and Lange, F. F., J. Mater. Res. 6, 23872392 (1991).CrossRefGoogle Scholar
7Miller, K. T., Lange, F. F., and Marshall, D. B., J. Mater. Res. 5, 151160 (1990).CrossRefGoogle Scholar
8Cain, M. G. and Lange, F. F., unpublished research.Google Scholar
9Golden, S. J., Lange, F. F., Clarke, D. R., Chang, L. D., and T.Necker, C., Appl. Phys. Lett. July, 22 (1992).Google Scholar
10Lanham, G. M., Lange, F. F., and Clarke, D. R., unpublished research.Google Scholar
11Hesse, D. and Bethge, H., J. Cryst. Growth 65, 6976 (1983).CrossRefGoogle Scholar
12Iyi, N., Takekawa, S., and Kimura, S., J. Solid State Chem. 83, 819 (1989).CrossRefGoogle Scholar
13Viana, B., Lejus, A. M., Vivien, D., Poncon, V., and Boulon, G., J. Solid State Chem. 71, 7786 (1987).CrossRefGoogle Scholar
14Laville, F., Gourier, D., Lejus, A. M., and Vivien, D., J. Solid State Chem. 49, 180187 (1983).CrossRefGoogle Scholar
15Phase Diagrams For Ceramists, edited by Levine, E. M. and McMurdie, H. F. (The American Ceramic Society Inc., Westerville, OH, 1975), Fig. 4368.Google Scholar
16Morgan, P. E. D. and Miles, J. A., J. Am. Ceram. Soc. 69, cl57cl59 (1986).Google Scholar
17Wyon, C., Aubert, J. J., and Grange, Y., J. Cryst. Growth 99, 845849 (1990).CrossRefGoogle Scholar
18Saber, D. and Lejus, A. M., Mater. Res. Bull. XVI, 13251330 (1981).CrossRefGoogle Scholar
19Collongues, R., Gourier, D., Kahn-Harari, A., Lejus, A. M., Thery, J., and Vivien, D., Ann. Rev. Mater. Sci. 20, 5182 (1990).CrossRefGoogle Scholar
20Iyi, N., Inoue, Z., and Kimura, S., J. Solid State Chem. 54, 123125 (1984).CrossRefGoogle Scholar
21Iyi, N., Inoue, Z., Takekawa, S., and Kimura, S., J. Solid State Chem. 54, 7077 (1984).CrossRefGoogle Scholar
22Geller, S. and Bala, V. B., Acta Crystallogr. 9, 10191025 (1956).CrossRefGoogle Scholar
23International Tables for X-ray Crystallography Vol. 1 (1952), pp. 293 and 304.Google Scholar
24Abrahams, S. C., Marsh, P., and Brandle, C. D., J. Chem. Phys. 86, 42214227 (1987).CrossRefGoogle Scholar
25Steeds, J., in Introduction to Analytical Electron Microscopy, edited by Hren, J. J., Goldstein, J. I., and Joy, D. C. (Plenum Press, New York, 1979), pp. 387436.CrossRefGoogle Scholar
26Liebertz, J., Z. Kristall. 116, 297300 (1984).Google Scholar
27Hirsch, P., Howie, A., Nicholson, R., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals (R. E. Krieger Publ. Co., Malabar, FL, 1977).Google Scholar
28Megaw, H. D., Crystal Structures—A Working Approach (W.A. Saunders Co., Philadelphia, PA, 1973).Google Scholar
29Saber, D., Dexpert-Ghys, J., Caro, P., Lejus, A. M., and Vivien, D., J. Chem. Phys. 82, 56485657 (1985).CrossRefGoogle Scholar
30Takada, T., Ileda, Y., Yoshinaga, H., and Bando, Y., in FERRITES: Proc. Int. Conference, 1971.Google Scholar
31Powell-Dogan, C. A. and Heuer, A.H., J. Am. Ceram. Soc. 73, 36703676 (1990).CrossRefGoogle Scholar
32Susnitzky, D. W. and Carter, C. B., J. Am. Ceram. Soc. 69, C-25-C-27 (1986).Google Scholar
33Schneider, S. J., Roth, R. S., and Waring, J. L., J. Res. NBS 65A, 345374 (1961).CrossRefGoogle Scholar
34Bloss, F. D., Crystallography and Crystal Chemistry, An Introduction (Holt, Rinehart and Winston, Inc., New York, 1971).Google Scholar
35Gasperin, M. and Saine, M. C., J. Solid State Chem. 54, 6169 (1984).CrossRefGoogle Scholar
36Kahn, A., Lejus, A. M., Madsac, M., Thery, J., Vivien, D., and Bernier, J. C., J. Appl. Phys. 52, 68646869 (1981).CrossRefGoogle Scholar
37Wang, X. H., Lejus, A. M., Vivien, D., and Collongues, R., Mater. Res. Bull. XXIII, 4349 (1988).CrossRefGoogle Scholar
38Verstegen, J. M. P. J. and Stevels, A. L. N., J. Lumin. 9, 406414 (1974).CrossRefGoogle Scholar