Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T02:33:55.240Z Has data issue: false hasContentIssue false

High Strength, Electrically Conductive Pore-free TiO2 Ceramics made by Hot Isostatic Pressing

Published online by Cambridge University Press:  31 January 2011

Yukio Kishi
Affiliation:
Nihon Ceratec Co., Ltd., 3–5, Ake-dori, Izumi, Sendai, Miyagi 981–32, Japan
Katsuhiko Ogura
Affiliation:
Nihon Ceratec Co., Ltd., 3–5, Ake-dori, Izumi, Sendai, Miyagi 981–32, Japan
Kiichiro Kamata
Affiliation:
Department of Chemistry, Nagaoka University of Technology, 1603–1, Kamitomioka, Nagaoka, Niigata 940–21, Japan
Hidetoshi Saitoh
Affiliation:
Department of Chemistry, Nagaoka University of Technology, 1603–1, Kamitomioka, Nagaoka, Niigata 940–21, Japan
Keizo Uematsu
Affiliation:
Department of Chemistry, Nagaoka University of Technology, 1603–1, Kamitomioka, Nagaoka, Niigata 940–21, Japan
Get access

Abstract

A high-purity, single-phase TiO2 ceramic with high density, strength, and electrical conduction was developed as a key structural material for the production equipment of semiconductors. Green bodies were made of high purity rutile TiO2 of very fine powder. They were sintered in air at 1200 °C for 2 h and then were hot isostatically pressed (HIPed) in argon at 1000 °C, 150 MPa for 2 h. HIPed TiO2 ceramics were found to be electrically conductive and pore free. Their relative density, specific resistance, and bending strength were 100%, 1 Ω ·cm, and 300 MPa, respectively. No strength degradation was found to the temperature up to 1000 °C. This material has high potential for use as electrically conductive structure materials in the semiconductor industry.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wardly, G. A., Rev. Sci. Instrum 44, 15061509 (1973).CrossRefGoogle Scholar
2.Watanabe, T., Aoshima, T., Kitabayashi, T., and Nakayama, C., J. Ceram. Soc. Jpn. 101, 11071114 (1993).CrossRefGoogle Scholar
3.Bosman, A. J. and van Daal, H. J., Adv. Phys. 19, 1 (1970).CrossRefGoogle Scholar
4.Gruber, H. and Krautz, E., Z. Metallkd. 77, 203206 (1986).Google Scholar
5.Wilms, V. and Herman, H., Thin Solid Films 39, 251 (1976).CrossRefGoogle Scholar
6.Kamal, M. and Pratsing, S. E., J. Am. Ceram. Soc. 75, 34083416 (1992).Google Scholar
7.Kamata, K., Maruyama, K., and Amano, S., J. Mater. Sci. Lett. 9, 316319 (1990).CrossRefGoogle Scholar
8.Nanko, M., Isizaki, K., and Fujikawa, T., J. Am. Ceram. Soc. 77, 24372442 (1994).CrossRefGoogle Scholar
9.Alford, N. M., Kendall, K., Clegg, W. J., and Birchall, J. D., Adv. Ceram. Mater. 3, 113117 (1988).CrossRefGoogle Scholar
10.Kishimoto, A., Koumoto, K., and Yanagida, H., J. Am. Ceram. Soc. 72, 13731376 (1989).CrossRefGoogle Scholar
11.Wohlfromm, H., Pena, P., Moya, J. S., and Requena, J., European Ceramic Conference 1st Masstric, 1211–1217 (1989).Google Scholar
12.Roy, D. W. and Rochester, F. P., U.S. Patent 3 459 503, Aug. 5 (1969).Google Scholar
13.Fullman, R. L., Trans. Am. Inst. Min., Metall., Pet. Eng. 3, 447453 (1953).Google Scholar
14.Watari, K., Seki, Y., and Isizaki, K., J. Ceram. Soc. Jpn. 97, 5662 (1989).CrossRefGoogle Scholar
15.Uematsu, K., Itakura, K., Sekiguchi, M., Uchida, N., Saito, K., and Miyamoto, A., J. Am. Ceram. Soc. 72, 12391240 (1989).CrossRefGoogle Scholar
16.Uematsu, K., Itakura, K., Sekiguchi, M., Uchida, N., Saito, K., Miyamoto, A., and Miyashita, T., J. Am. Ceram. Soc. 73, 7478 (1990).CrossRefGoogle Scholar
17.Kim, J-Y., Uchida, N., and Uematsu, K., J. Ceram. Soc. Jpn. 100, 311314 (1992).Google Scholar
18.Lewis, D., Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1983), Vol. 6, pp. 487496.Google Scholar
19.Sato, T., Ishitsuka, M., and Shimada, M., Materials & Design 9, 204212 (1988).CrossRefGoogle Scholar
20.Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (John Wiley, New York, 1972), p. 141.Google Scholar