Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T22:09:10.316Z Has data issue: false hasContentIssue false

High temperature strength of silicon nitride ceramics with ytterbium silicon oxynitride

Published online by Cambridge University Press:  31 January 2011

Toshiyuki Nishimura
Affiliation:
National Institute for Research in Inorganic Materials, 1–1, Namiki, Tsukuba, Ibaraki, 305, Japan
Mamoru Mitomo
Affiliation:
National Institute for Research in Inorganic Materials, 1–1, Namiki, Tsukuba, Ibaraki, 305, Japan
Hisayuki Suematsu
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4529, Nagatsuta, Midoriku, Yokohama, Kanagawa, 226, Japan
Get access

Abstract

Silicon nitride ceramics with ytterbium silicon oxynitride (Yb4Si2O7N2) as secondary phase were fabricated by hot-pressing the powder mixtures, including 50.0 to 97.0 mol% of silicon nitride with a mixture of Yb2O3 and SiO2 (Yb2O3/SiO2 = 4). Sinterability of the materials with Yb2O3 was higher than that with Y2O3 in the same composition of raw powder mixtures. High density materials were obtained under the condition of 50.0 to 89.1 mol% of silicon nitride in raw powder mixtures. Mechanical properties of silicon nitride containing 97.6 mol% of Si3N4 and 2.4 mol% of Yb4Si2O7N2 were measured. Fracture toughness measured by the indentation technique was 5.9 MPam1/2. Bending strength at room temperature and at 1500 °C was 977 MPa and 484 MPa, respectively. The silicon nitride grains consisted of highly elongated rod-like grains and thin needle-like grains. The Yb4Si2O7N2 grains were crystallized at multigrain junctions and bonded close to Si3N4 grains. High strength at high temperature is supposed to be based on the presence of crystalline Yb4Si2O7N2 having a high melting point.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gazza, G. E., J. Am. Ceram. Soc. 56, 662 (1973).CrossRefGoogle Scholar
2.Mitomo, M., Yogyo-Kyokai-Shi 85, 50 (1977).CrossRefGoogle Scholar
3.Sanders, W. A. and Mieskowski, D. M., Am. Ceram. Soc. Bull. 64, 304 (1985).Google Scholar
4.Cheong, D-S. and Sanders, W. A., J. Am. Ceram. Soc. 75, 3331 (1992).CrossRefGoogle Scholar
5.Levin, E. M., Robbins, C. R., and McMurdie, H. F., Phase diagram for Ceramists 1969 Supplement (The American Ceramic Society, Westerville, OH, 1969), p. 107.Google Scholar
6.Levin, E. M., Robbins, C. R., and McMurdie, H. F., Phase diagram for Ceramists 1969 Supplement (The American Ceramic Society, Westerville, OH, 1969), p. 108.Google Scholar
7.Cinibulk, M. K., Thomas, G., and Johnson, S. M., J. Am. Ceram. Soc. 75, 2037 (1992).CrossRefGoogle Scholar
8.Vetrano, J. S., Kleebe, H-J., Hampp, E., Hoffmann, M. J., Ruhle, M., and Cannon, R. M., J. Mater. Sci. 28, 3529 (1993).CrossRefGoogle Scholar
9.Cinibulk, M. K., Thomas, G., and Johnson, S. M., J. Am. Ceram. Soc. 75, 2050 (1992).CrossRefGoogle Scholar
10.Hoffmann, M. J., in Tailoring of Mechanical Properties of Si3N4 Ceramics, edited by Hoffmann, M. J. and Petzow, G. (Kluwer Academic Publishers, The Netherlands, 1994), p. 233.CrossRefGoogle Scholar
11.Lewis, M. H., in Silicon Nitride Ceramics: Scientific and Technological Advances, edited by Chen, I-W., Becher, P. F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 159.Google Scholar
12.Tsuge, A., Nishida, K., and Komatsu, M., J. Am. Ceram. Soc. 58, 323 (1975).CrossRefGoogle Scholar
13.Jack, K. H., in Non-Oxide Technical and Engineering Ceramics, edited by Hampshire, S. (Elsevier Applied Science, London, UK, 1986), p. 1.Google Scholar
14.Nishimura, T. and Mitomo, M., J. Mater. Res. 10, 240 (1995).CrossRefGoogle Scholar
15.Lange, F. F., Singhal, S. C., and Kuznicki, R. C., J. Am. Ceram. Soc. 60, 249 (1977).CrossRefGoogle Scholar
16.Wills, R. R., Stewart, R. W., Cunningham, J. A., and Wimmer, J. M., J. Mater. Sci. 11, 749 (1976).CrossRefGoogle Scholar
17.Montorsi, M. and Appendino, P., J. Less-Comm. Metals 68, 193 (1979).CrossRefGoogle Scholar
18.Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
19.Rice, R. W., McKinney, K. R., Wu, C. Cm., Freiman, S.W., and Donough, W. J. M., J. Mater. Sci. 20, 1392 (1985).CrossRefGoogle Scholar
20.Rice, R. W., C. Cm. Wu, and Borchelt, F., J. Am. Ceram. Soc. 77, 2359 (1994).Google Scholar
21.Hecht, N. L., Goodrich, S. M., Chuck, L., McCullum, D. E., and Tennery, V. J., Am. Ceram. Soc. Bull. 71, 653 (1992).Google Scholar
22.Smith, J. T. and Quackenbush, C. L., Am. Ceram. Soc. Bull. 59, 529 (1980).Google Scholar
23.Hirosaki, N., Okada, A., and Mitomo, M., J. Mater. Sci. 25, 1872 (1990).CrossRefGoogle Scholar