Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T13:08:49.421Z Has data issue: false hasContentIssue false

High-energy storage performance in BaTiO3-based lead-free multilayer ceramic capacitors

Published online by Cambridge University Press:  05 November 2020

Huijing Yang
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, SheffieldS1 3JD, UK Department of Physics, Tangshan Normal University, Tangshan063000, China
Weichao Bao
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai200050, China
Zhilun Lu
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, SheffieldS1 3JD, UK The Henry Royce Institute, Sir Robert Hadfield Building, SheffieldS1 3JD, UK
Linhao Li
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, SheffieldS1 3JD, UK
Hongfen Ji
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, SheffieldS1 3JD, UK Laboratory of Thin Film Techniques and Optical Test, Xi'an Technological University, Xi'an 710032, China
Yuhe Huang
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, SheffieldS1 3JD, UK
Fangfang Xu
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai200050, China
Ge Wang*
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, SheffieldS1 3JD, UK
Dawei Wang*
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, SheffieldS1 3JD, UK
*
a)Address all correspondence to these authors. e-mail: g.wang@sheffield.ac.uk
Get access

Abstract

Lead-free BaTiO3 (BT)-based multilayer ceramic capacitors (MLCCs) with the thickness of dielectric layers ~9 μm were successfully fabricated by tape-casting and screen-printing techniques. A single phase of the pseudo-cubic structure was revealed by X-ray diffraction. Backscattered images and energy-dispersive X-ray elemental mapping indicated the high quality of MLCCs without observation of interaction, wrapping, or delamination. The relaxor state was confirmed by transmission electron microscopy and temperature-dependent permittivity. Impedance spectroscopy at various temperatures revealed the electrical heterogeneous response for MLCCs with high-resistive electrical components. Improved energy storage performance was obtained by multilayering, comparing with the bulk ceramics. Enhanced recoverable energy density ~6.88 J/cm3 with high efficiency ~90% were realized under an electric field of 820 kV/cm, which is mainly attributed to the intrinsic high-resistivity and relaxor behavior. Furthermore, good temperature (20–85 °C) and frequency stabilities (0.5–50 Hz) were observed in the MLCCs, which are attractive for pulsed power applications.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

H. Yang and W. Bao contributed equally to this work.

References

Capacitors, K.: Multilayer ceramic capacitors in automotive. Power Electron. Eur. 2, 36 (2017).Google Scholar
M. Manufacturing: Chip Multilayer Ceramic Capacitors for Automotive Murata innovator Electronics, https://www.murata.com/~/media/webrenewal/support/library/catalog/products/capacitor/mlcc/c03e.ashx (2020).Google Scholar
Hong, K., Lee, T.H., Suh, J.M., Yoon, S-H., and Jang, H.W.: Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C 7, 9782 (2019).CrossRefGoogle Scholar
Yang, L., Kong, X., Li, F., Hao, H., Cheng, Z., Liu, H., Li, J-F., and Zhang, S.: Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72 (2019).CrossRefGoogle Scholar
Wang, D., Wang, G., Murakami, S., Fan, Z., Feteira, A., Zhou, D., Sun, S., Zhao, Q., and Reaney, I.M.: BiFeO3-BaTiO3: A new generation of lead-free electroceramics. J. Adv. Dielectr. 08, 1830004 (2018).CrossRefGoogle Scholar
Palneedi, H., Peddigari, M., Hwang, G-T., Jeong, D-Y., and Ryu, J.: High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018).CrossRefGoogle Scholar
Liu, Z., Lu, T., Ye, J., Wang, G., Dong, X., Withers, R., and Liu, Y.: Antiferroelectrics for energy storage applications: A review. Adv. Mater. Technol. 3, 1800111 (2018).CrossRefGoogle Scholar
Yao, Z., Song, Z., Hao, H., Yu, Z., Cao, M., Zhang, S., Lanagan, M.T., and Liu, H.: Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29, 1601727 (2017).CrossRefGoogle ScholarPubMed
Hao, X.: A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 03, 1330001 (2013).CrossRefGoogle Scholar
Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., and Ding, Y.: Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. Mater. 19, 291 (2009).CrossRefGoogle Scholar
Kishi, H., Mizuno, Y., and Chazono, H.: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1 (2003).CrossRefGoogle Scholar
Sun, Z., Wang, Z., Tian, Y., Wang, G., Wang, W., Yang, M., Wang, X., Zhang, F., and Pu, Y.: Progress, outlook, and challenges in lead-free energy-storage ferroelectrics. Adv. Electron. Mater. 6, 1900698 (2020).CrossRefGoogle Scholar
Snook, G.A., Kao, P., and Best, A.S.: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1 (2011).CrossRefGoogle Scholar
Wang, S., Jiao, S., Wang, J., Chen, H-S., Tian, D., Lei, H., and Fang, D-N.: High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11, 469 (2017).CrossRefGoogle ScholarPubMed
Song, Y., Jiao, S., Tu, J., Wang, J., Liu, Y., Jiao, H., Mao, X., Guo, Z., and Fray, D.J.: A long-life rechargeable Al ion battery based on molten salts. J. Mater. Chem. A 5, 1282 (2017).CrossRefGoogle Scholar
Sun, H., Wang, W., Yu, Z., Yuan, Y., Wang, S., and Jiao, S.: A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 51, 11892 (2015).CrossRefGoogle ScholarPubMed
Wang, W., Jiang, B., Xiong, W., Sun, H., Lin, Z., Hu, L., Tu, J., Hou, J., Zhu, H., and Jiao, S.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3, 3383 (2013).CrossRefGoogle ScholarPubMed
Wang, S., Yu, Z., Tu, J., Wang, J., Tian, D., Liu, Y., and Jiao, S.: A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene. Adv. Energy Mater. 6, 1600137 (2016).CrossRefGoogle Scholar
Jiao, H., Wang, C., Tu, J., Tian, D., and Jiao, S.: A rechargeable Al-ion battery: Al/molten AlCl3–urea/graphite. Chem. Commun. 53, 2331 (2017).CrossRefGoogle ScholarPubMed
Chen, Q., Shen, Y., Zhang, S., and Zhang, Q.M.: Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433 (2015).CrossRefGoogle Scholar
Li, Q., Yao, F-Z., Liu, Y., Zhang, G., Wang, H., and Wang, Q.: High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219 (2018).CrossRefGoogle Scholar
Shkuratov, S.I., Baird, J., Antipov, V.G., Zhang, S., and Chase, J.B.: Multilayer PZT 95/5 antiferroelectric film energy storage devices with giant power density. Adv. Mater. 31, 1904819 (2019).CrossRefGoogle ScholarPubMed
Li, W-B., Zhou, D., Xu, R., Wang, D-W., Su, J-Z., Pang, L-X., Liu, W-F., and Chen, G-H.: BaTiO3-based multilayers with outstanding energy storage performance for high temperature capacitor applications. ACS Appl. Energy Mater. 2, 5499 (2019).CrossRefGoogle Scholar
Li, W-B., Zhou, D., Xu, R., Pang, L-X., and Reaney, I.M.: BaTiO3–Bi(Li0.5Ta0.5)O3, lead-free ceramics, and multilayers with high energy storage density and efficiency. ACS Appl. Energy Mater. 1, 5016 (2018).CrossRefGoogle Scholar
Zhou, M., Liang, R., Zhou, Z., and Dong, X.: Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528 (2018).CrossRefGoogle Scholar
Yuan, Q., Yao, F., Wang, Y., Ma, R., and Wang, H.: Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552 (2017).CrossRefGoogle Scholar
Li, M., Fan, P., Ma, W., Liu, K., Zang, J., Samart, C., Zhang, T., Tan, H., Salamon, D., and Zhang, H.: Constructing layered structures to enhance the breakdown strength and energy density of Na0.5Bi0.5TiO3-based lead-free dielectric ceramics. J. Mater. Chem. C 7, 15292 (2019).CrossRefGoogle Scholar
Pan, Z., Hu, D., Zhang, Y., Liu, J., Shen, B., and Zhai, J.: Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J. Mater. Chem. C 7, 4072 (2019).CrossRefGoogle Scholar
Zhang, L., Pu, Y., Chen, M., Wei, T., Keipper, W., Shi, R., Guo, X., Li, R., and Peng, X.: High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J. Eur. Ceram. Soc. 40, 71 (2020).CrossRefGoogle Scholar
Zhang, L., Pu, Y., Chen, M., Wei, T., and Peng, X.: Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem. Eng. J. 383, 123154 (2020).CrossRefGoogle Scholar
Wang, D., Fan, Z., Li, W., Zhou, D., Feteira, A., Wang, G., Murakami, S., Sun, S., Zhao, Q., Tan, X., and Reaney, I.M.: High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3–BaTiO3 ceramics. ACS Appl. Energy Mater. 1, 4403 (2018).CrossRefGoogle Scholar
Wang, D., Fan, Z., Zhou, D., Khesro, A., Murakami, S., Feteira, A., Zhao, Q., Tan, X., and Reaney, I.M.: Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 6, 4133 (2018).CrossRefGoogle Scholar
Wang, G., Li, J., Zhang, X., Fan, Z., Yang, F., Feteira, A., Zhou, D., Sinclair, D.C., Ma, T., Tan, X., Wang, D., and Reaney, I.M.: Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ. Sci. 12, 582 (2019).CrossRefGoogle Scholar
Wang, G., Lu, Z., Li, J., Ji, H., Yang, H., Li, L., Sun, S., Feteira, A., Yang, H., Zuo, R., Wang, D., and Reaney, I.M.: Lead-free (Ba,Sr)TiO3–BiFeO3 based multilayer ceramic capacitors with high energy density. J. Eur. Ceram. Soc. 40, 1779 (2020).CrossRefGoogle Scholar
Wang, G., Lu, Z., Yang, H., Ji, H., Mostaed, A., Li, L., Wei, Y., Feteira, A., Sun, S., Sinclair, D.C., Wang, D., and Reaney, I.M.: Fatigue resistant lead-free multilayer ceramic capacitors with ultrahigh energy density. J. Mater. Chem. A 8, 11414 (2020).CrossRefGoogle Scholar
Tian, Y., Jin, L., Zhang, H., Xu, Z., Wei, X., Politova, E.D., Stefanovich, S.Y., Tarakina, N.V., Abrahams, I., and Yan, H.: High energy density in silver niobate ceramics. J. Mater. Chem. A 4, 17279 (2016).CrossRefGoogle Scholar
Tian, Y., Jin, L., Zhang, H., Xu, Z., Wei, X., Viola, G., Abrahams, I., and Yan, H.: Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 5, 17525 (2017).CrossRefGoogle Scholar
Zhao, L., Liu, Q., Gao, J., Zhang, S., and Li, J-F.: Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29, 1701824 (2017).CrossRefGoogle ScholarPubMed
Gao, J., Zhang, Y., Zhao, L., Lee, K-Y., Liu, Q., Studer, A., Hinterstein, M., Zhang, S., and Li, J.: Enhanced antiferroelectric phase stability in La-doped AgNbO3: Perspectives from the microstructure to energy storage properties. J. Mater. Chem. A 7, 2225 (2018).Google Scholar
Han, K., Luo, N., Mao, S., Zhuo, F., Liu, L., Peng, B., Chen, X., Hu, C., Zhou, H., and Wei, Y.: Ultrahigh energy-storage density in A-/B-site co-doped AgNbO3 lead-free antiferroelectric ceramics: insight into the origin of antiferroelectricity. J. Mater. Chem. A 7, 26293 (2019).CrossRefGoogle Scholar
Luo, N., Han, K., Zhuo, F., Xu, C., Zhang, G., Liu, L., Chen, X., Hu, C., Zhou, H., and Wei, Y.: Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 7, 14118 (2019).CrossRefGoogle Scholar
Tian, Y., Jin, L., Hu, Q., Yu, K., Zhuang, Y., Viola, G., Abrahams, I., Xu, Z., Wei, X., and Yan, H.: Phase transitions in tantalum-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 7, 834 (2019).CrossRefGoogle Scholar
Lu, Z., Bao, W., Wang, G., Sun, S., Li, L., Li, J., Yang, H., Ji, H., Feteira, A., Li, D-j., Xu, F., Kleppe, A., Wang, D., Liu, S-Y., and Reaney, I.M.: Superior energy storage in AgNbO3-based lead-free antiferroelectrics. Nano Energy, doi: https://doi.org/10.1016/j.nanoen.2020.105423 (2020).Google Scholar
Yang, Z., Du, H., Qu, S., Hou, Y., Ma, H., Wang, J., Wang, J., Wei, X., and Xu, Z.: Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics. J. Mater. Chem. A 4, 13778 (2016).CrossRefGoogle Scholar
Shao, T., Du, H., Ma, H., Qu, S., Wang, J., Wang, J., Wei, X., and Xu, Z.: Potassium–sodium niobate based lead-free ceramics: Novel electrical energy storage materials. J. Mater. Chem. A 5, 554 (2017).CrossRefGoogle Scholar
Tao, H. and Wu, J.: Optimization of energy storage density in relaxor (K, Na, Bi)NbO3 ceramics. J. Mater. Sci. Mater. Electron. 28, 16199 (2017).CrossRefGoogle Scholar
Li, J., Li, F., Xu, Z., and Zhang, S.: Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, 1802155 (2018).CrossRefGoogle ScholarPubMed
Cui, C. and Pu, Y.: Improvement of energy storage density with trace amounts of ZrO2 additives fabricated by wet-chemical method. J. Alloys Compd. 747, 495 (2018).CrossRefGoogle Scholar
Qiao, X., Zhang, F., Wu, D., Chen, B., Zhao, X., Peng, Z., Ren, X., Liang, P., Chao, X., and Yang, Z.: Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020).CrossRefGoogle Scholar
Han, K., Luo, N., Jing, Y., Wang, X., Peng, B., Liu, L., Hu, C., Zhou, H., Wei, Y., Chen, X., and Feng, Q.: Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics. Ceram. Int. 45, 5559 (2019).CrossRefGoogle Scholar
Zhao, P., Wang, H., Wu, L., Chen, L., Cai, Z., Li, L., and Wang, X.: High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy Mater. 9, 1803048 (2019).CrossRefGoogle Scholar
Cai, Z., Zhu, C., Wang, H., Zhao, P., Chen, L., Li, L., and Wang, X.: High-temperature lead-free multilayer ceramic capacitors with ultrahigh energy density and efficiency fabricated via two-step sintering. J. Mater. Chem. A 7, 14575 (2019).CrossRefGoogle Scholar
Sun, Z., Wang, L., Liu, M., Ma, C., Liang, Z., Fan, Q., Lu, L., Lou, X., Wang, H., and Jia, C-L.: Interface thickness optimization of lead-free oxide multilayer capacitors for high-performance energy storage. J. Mater. Chem. A 6, 1858 (2018).CrossRefGoogle Scholar
Yang, H., Wang, G., Lu, Z., Li, L., Bao, W., Ji, H., Li, J., Feteira, A., Xu, F., Zhang, Y., Sun, H., Huang, Z., Lou, W., Song, K., Sun, S., Wang, D., and Reaney, I.M: Novel BaTiO3-based, Ag/Pd compatible lead-free relaxors with superior energy storage performance. ACS Appl. Mater. Interfaces. (2020). doi: 10.1021/acsami.0c13057.Google ScholarPubMed
Zheng, D., Zuo, R., Zhang, D., and Li, Y.: Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 98, 2692 (2015).Google Scholar
Hussain, F., Khesro, A., Lu, Z., Wang, G., and Wang, D.: Lead free multilayer piezoelectric actuators by economically new approach. Front. Mater. 7, 87 (2020).CrossRefGoogle Scholar
Cumming, D.J., Sebastian, T., Sterianou, I., Rödel, J., and Reaney, I.M.: Bi(Me)O3–PbTiO3 high TC piezoelectric multilayers. Mater. Technol. 28, 247 (2013).CrossRefGoogle Scholar
Wang, T., Jin, L., Li, C., Hu, Q., and Wei, X.: Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98, 559 (2015).CrossRefGoogle Scholar
Li, L., Li, M., Zhang, H., Reaney, I.M., and Sinclair, D.C.: Controlling mixed conductivity in Na1/2Bi1/2TiO3 using A-site non-stoichiometry and Nb-donor doping. J. Mater. Chem. C 4, 5779 (2016).CrossRefGoogle Scholar
Li, M., Li, L., Zang, J., and Sinclair, D.C.: Donor-doping and reduced leakage current in Nb-doped Na0.5Bi0.5TiO3. Appl. Phys. Lett. 106, 102904 (2015).CrossRefGoogle Scholar
Li, M., Zhang, H., Cook, S.N., Li, L., Kilner, J.A., Reaney, I.M., and Sinclair, D.C.: Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem. Mater. 27, 629 (2015).CrossRefGoogle Scholar
Lu, Z., Wang, G., Bao, W., Li, J., Li, L., Mostaed, A., Yang, H., Ji, H., Li, D., Feteira, A., Xu, F., Sinclair, D., Wang, D., Liu, S-Y., and Reaney, I.: Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci. 13, 2938 (2020).CrossRefGoogle Scholar
Chen, L., Wang, H., Zhao, P., Zhu, C., Cai, Z., Cen, Z., Li, L., and Wang, X.: Multifunctional BaTiO3-(Bi0.5Na0.5)TiO3-based MLCC with high-energy storage properties and temperature stability. J. Am. Ceram. Soc. 102, 4178 (2019).CrossRefGoogle Scholar
Chen, L., Sun, N., Li, Y., Zhang, Q., Zhang, L., and Hao, X.: Multifunctional antiferroelectric MLCC with high-energy-storage properties and large field-induced strain. J. Am. Ceram. Soc. 101, 2313 (2018).CrossRefGoogle Scholar
Ogihara, H., Randall, C.A., and Trolier-McKinstry, S.: High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92, 1719 (2009).CrossRefGoogle Scholar
Cai, Z., Wang, H., Zhao, P., Chen, L., Zhu, C., Hui, K., Li, L., and Wang, X.: Significantly enhanced dielectric breakdown strength and energy density of multilayer ceramic capacitors with high efficiency by electrodes structure design. Appl. Phys. Lett. 115, 023901 (2019).CrossRefGoogle Scholar